# Browse Activities

# Pedagogy

- Class Response Systems 2 matches
- ConcepTests 10 matches
- Cooperative Learning 2 matches
- Demonstrations 16 matches
- Interactive Lectures 19 matches
- Just in Time Teaching 3 matches
- Large Classes 1 match
- Lecture 32 matches
- Mathematical and Statistical Models 3 matches
- Quantitative Reasoning 3 matches
- Simulation of Data 1 match
- Teaching with Data 6 matches
- Teaching with Models 3 matches
- Teaching with Visuals 5 matches
- Think-Pair-Share 2 matches

# Subject: Physics

Results 1 - 20 of **67 matches**

Waves Through Earth: Interactive Online Mac and PC part of Mathematical and Statistical Models:Examples

Students vary the seismic P and S wave velocity through each of four concentric regions of Earth and match "data" for travel times vs. angular distance around Earth's surface from the source to detector.

Slinky and Waves part of Teaching with Interactive Demonstrations:Examples

Use a Slinky to show:P and S waves, Wave reflection, and Standing waves in interactive lecture demonstration.

Mass Balance Model part of Mathematical and Statistical Models:Examples

Students are introduced to the concept of mass balance, flow rates, and equilibrium using an online interactive water bucket model.

Properties of Electrostatic Charge: Interactive Lecture Demonstration part of Teaching with Interactive Demonstrations:Examples

This activity is an interactive lecture demonstration format which can be used to teach the first lesson of electrostatics. Students will investigate conservation of charge, charge by contact, polarization of charge and charge by induction.

The Standard Model: Using CERN output graphics to identify elementary particles part of Just in Time Teaching:Examples

After using the historical development of the Standard Model to develop introductory understanding, students link to OPAL and DELPHI data archives from CERN to identify and study the tracks from elementary particles.

Angular Momentum Experiment part of Just in Time Teaching:Examples

After using the historical development of concepts of conserved motion to develop introductory understanding, students are directed to a series of activities to gain a better understanding of momentum, conservation of momenta, angular momentum, and conservation of angular momenta.

Will the egg break? part of Interactive Lectures:Examples

This is a discrepant event that can be used to help students understand applications of the momentum-impulse theorem. Students are first asked to predict and hypothesize what will happen when an egg is thrown into ...

Modeling emf, Potential Difference, and Internal Resistance part of Interactive Lectures:Examples

Through class discussion and think-pair-share questions, this activity helps students come to understand the difference between emf and potential difference in electrical circuits. These concepts are broached ...

Rutherford's Model of the Atom part of Interactive Lectures:Examples

Students are asked think-pair-share questions to predict the interaction of alpha particles fired toward the nucleus of an atom. An online applet is used to illustrate the interaction and test students' ideas ...

The Transformer: Simulation Lecture Demo part of Interactive Lectures:Examples

The activity presents an interactive lecture demonstration of the operation of a transformer using a simulation. -

Think-Pair-Share Analysis of the Operation of a Metal Detector part of Interactive Lectures:Examples

The activity presents a Think-Pair-Share analysis of a metal detector including a simulation. -

Learning to Think about Gravity II: Aristotle to Einstein part of Interactive Lectures:Examples

The purpose of this exercise is to learn how to think about gravity, learn about scientific methodology, and transition from the Aristotelian to Newtonian to Einsteinian understanding of gravity. -

Projectile and Satellite Orbits part of Interactive Lectures:Examples

Gravitation introductory activity with interesting animation. The activity allows the student to revile the connection between the initial speed and the shape of satellite orbit. -

Measuring voltage and current in a DC circuit part of Interactive Lectures:Examples

These exercises target student misconceptions about how to properly measure voltage and current in simple DC circuits by letting them investigate different meter arrangements without fear of damaging equipment. ...

Concept Questions for the Photoelectric Effect with Interactive Simulation part of Interactive Lectures:Examples

These are interactive lecture-demonstration questions probe student understanding of fundamental concepts in the photoelectric effect. -

Motion Concepts: Displacement, velocity, & acceleration graphs part of Interactive Lectures:Examples

Students often struggle with motion concepts. These activities focus on the graphical representations of displacement, velocity, and acceleration given a number of situations of an object moving along the x-axis. ...

Science on a Skateboard - Applications of Newton's Third Law part of Interactive Lectures:Examples

A think, pair, share activity with Socratic questioning to help students begin to understand rocket propulsion. -

Interactive Lecture Questions for Single Slit Diffraction part of Interactive Lectures:Examples

This is a set of interactive lecture demonstration questions designed to probe student understanding of single-slit diffraction. -

Helping Students Discover Total Internal Reflection part of Interactive Lectures:Examples

Students learn the basic relationship of Snell's Law, practice applying it to a situation, then are given another situation where it "doesn't work."??? This situation turns out to be one in ...

Models of the Hydrogen Atom part of Interactive Lectures:Examples

In this interactive lecture, models of the hydrogen atom are explored using an online Java applet. The exploration leads to qualitative and quantitative analysis of energy transitions. -