Patricia Cashman

Geoscience

University of Nevada-Reno

Materials Contributed through SERC-hosted Projects

Activities (2)

Determining Earthquake Recurrence Intervals from Trench Logs part of Rates and Time:GSA Activity Posters
Trench logs of the San Andreas Fault at Pallett Creek, CA are the data base for a lab or homework assignment that teaches about relative dating, radiometric dating, fault recurrence intervals and the reasons for uncertainty in predicting geologic phenomena. Students are given a trench log that includes several fault strands and dated stratigraphic horizons. They estimate the times of faulting based on bracketing ages of faulted and unfaulted strata. They compile a table with the faulting events from the trench log and additional events recognized in nearby trenches, then calculate maximum, minimum and average earthquake recurrence intervals for the San Andreas Fault in this area. They conclude by making their own prediction for the timing of the next earthquake. While basically an exercise in determining relative ages of geologic horizons and events, this assignment includes radiometric dates, recurrence intervals, and an obvious societal significance that has been well received by students. With minor modifications, this exercise has been used successfully with elementary school students through university undergraduate geology majors. Less experienced students can work in groups, with each group determining the age of a single fault strand; combining the results from different groups and calculating recurrence intervals can then be done as a class activity. University students in an introductory geology course for non-majors can add their data from the trench log to an existing table with other faulting events already provided. The exercise can be made more challenging for advanced students by using logs from several different trenches, requiring students to design the table themselves, and giving students the uncertainties for the radiometric dates rather than simple ages for the strata. Most studentsat all levelsare initially frustrated by their inability to determine an exact date of faulting from the available data. They gain a new appreciation for the task of the geoscientist who attempts to relate geologic phenomena to the human, rather than geologic, time scale.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Cause of the Mogul, Nevada, Earthquake Swarm, Spring 2008 part of Cutting Edge:Introductory Courses:Activities
Students examine data from fault- and magma- related earthquakes and determine distinguishing characteristics. They then apply these criteria to determine the cause of the Mogul earthquake sequence (that most of the students experienced) last spring.


Events and Communities

Introductory Courses Workshop AGU 2008 Participants: Presenter