Search the Site

Search across all the material in the Pedagogy in Action site. Use the boxes on the right to focus in on particular collections.


Help
Refine the Results

Pedagogy

Results 21 - 40 of 2896 matches

Fracture Fundamentals: A Cheesy Analog part of Pedagogy in Action:Library:Interactive Lecture Demonstrations:Examples
This activity has students make small cuts in processed cheese food and then apply shear stress perpendicular or parallel to the cuts to see what sort of fracturing will occur.

Global Temperatures part of Pedagogy in Action:Library:Teaching with Data:Examples
Students analyze the global temperature record from 1867 to the present. Long-term trends and shorter-term fluctuations are both evaluated.

The Modern Atmospheric CO2 Record part of Pedagogy in Action:Library:Teaching with Data:Examples
Students compare carbon dioxide (CO2) data from Mauna Loa Observatory, Barrow (Alaska), and the South Pole over the past 40 years to help them better understand what controls atmospheric CO2.

Earth's Radiation Budget: Part 1 part of Pedagogy in Action:Library:Teaching with Data:Examples
In this activity students explore the Earth's radiation budget using Earth radiation Budget Experiment (ERBE) data archived at the IRI/LDEO Climate Data Library (more info) .

How Fast Do Materials Weather? part of Pedagogy in Action:Library:Interactive Lectures:Examples
A think-pair-share activity in which students calculate weathering rates from tombstone weathering data.

Carbon Dioxide Exercise part of Pedagogy in Action:Library:Interactive Lectures:Examples
Students work in groups, plotting carbon dioxide concentrations over time on overheads and estimating the rate of change over five years.

Comparing Carbon Calculators part of Pedagogy in Action:Library:Teaching with Data:Examples
Carbon calculators, no matter how well intended as tools to help measure energy footprints, tend to be black boxes and can produce wildly different results, depending on the calculations used to weigh various ...

How Do We Estimate Magma Viscosity? part of Pedagogy in Action:Library:Teaching with SSAC:Examples
SSAC Physical Volcanology module. Students build a spreadsheet to examine how magma viscosity varies with temperature, fraction of crystals, and water content using the non-Arrhenian VFT model.

Bubbles in Magmas part of Pedagogy in Action:Library:Teaching with SSAC:Examples
SSAC Physical Volcanology module. Students build a spreadsheet and apply the ideal gas law to model the velocity of a bubble rising in a viscous magma.

Floodplains in the field part of Pedagogy in Action:Library:Field Labs:Field Lab Examples
In this lab, students measure a topographic and geologic cross-section across a floodplain by simple surveying and auguring techniques.

"Adopt an Outcrop" part of Pedagogy in Action:Library:Field Labs:Field Lab Examples
Describing rock outcrops and hand specimens

Building-Stone Geology part of Pedagogy in Action:Library:Field Labs:Field Lab Examples
Students in an area remote from igneous and metamorphic rocks wrote papers on the properties of locally used building stones and gave a walking tour in which they presented their results.

Geologic Mapping I part of Pedagogy in Action:Library:Field Labs:Field Lab Examples
Students complete a geologic map of a small area.

Metamorphic Rocks Lab part of Pedagogy in Action:Library:Indoor Labs:Examples
Students are introduced to the processes involved in metamorphism through hands-on study of rock samples. They examine different metamorphic paths, protoliths, textures, and minerals.

How Does Surface Deformation at an Active Volcano Relate to Pressure and Volume Change in the Magma Chamber? part of Pedagogy in Action:Library:Teaching with SSAC:Examples
SSAC Physical Volcanology module. Students build a spreadsheet to examine and apply the Mogi model for horizontal and vertical surface displacement vs. depth and pressure conditions in the magma chamber.

What is the Volume of a Debris Flow? part of Pedagogy in Action:Library:Teaching with SSAC:Examples
SSAC Physical Volcanology module. Students build a spreadsheet to estimate the volume of volcanic deposits using map, thickness and high-water mark data from the 2005 Panabaj debris flow (Guatemala).

Porosity and Permeability of Magmas part of Pedagogy in Action:Library:Teaching with SSAC:Examples
SSAC Physical Volcanology module. Students build a spreadsheet for an iterative calculation to find volume of bubbles and hence porosity, permeability and gas escape as a function of depth.

What is the Volume of the 1992 Eruption of Cerro Negro Volcano, Nicaragua? part of Pedagogy in Action:Library:Teaching with SSAC:Examples
SSAC Physical Volcanology module. Students build a spreadsheet to calculate the volume a tephra deposit using an exponential-thinning model.

What is the Relationship between Lava Flow Length and Effusion Rate at Mt Etna? part of Pedagogy in Action:Library:Teaching with SSAC:Examples
SSAC Physical Volcanology module. Students use Excel to determine a log-log relationship for flow length vs effusion rate and compare it with a theoretical expression for the maximum flow length.

What Should We Do About Global Warming? part of Pedagogy in Action:Library:Role Playing:Examples
This module contains an 8-lesson curriculum to study greenhouse gases and global warming using data and visualizations. The students will summarize the issue in a mock debate or a presentation.