Earth and Space Science > Activities

Activities


Help

Results 1 - 12 of 12 matches

Heat on the Move
Laura Schofield
To introduce students to the concept that heat transfer via convection is more efficient then heat transfer via conduction.

Know Your Neighbors--researching the planets
Kathie Kelly
Utilizing online and traditional resources students will collect data on planets and moons in our solar system. Working collaboratively students will generate a spreadsheet of the data. After verifying one ...

Using Your Marbles: Making Energy Work for You
Alisa Hilfinger
potential energy, kinetic energy, work

Why is the Earth Still Hot Inside?
Aaron Keller
Inquiry lab in which students study the rate of heat transfer as a function of size. Larger objects lose heat more slowly than smaller objects because their surface area relative to their volume is smaller. Relevant to the study of planetary formation, comparative planetology, basic thermodynamics, scientific inquiry, error checking, and the consequences of scaling.

Creating the Solar System step by step
Karen Curtin
The goal of this lesson is to encourage the clarification and understanding of the processes involved in the creation of our solar system. The lesson is part of a larger unit of astronomy which addresses the MA ...

Fluid Viscosity
Lindy Elkins-Tanton, Massachusetts Institute of Technology
Laboratory activity to introduce students to measuring fluid viscosity. Key words: Viscosity, fluid, Stokes, rheology, graduated cylinder.

Using Density to Predict Planetary Differentiation
Ashley Lagas
This is an inquiry based lesson designed for middle school students. This lesson serves as an informal assessment of students' understanding of density and also serves as an introduction to Planetary formation and Planetary differentiation.

Investigating Meteorites: Bridging Earth Science to Space Science
Katye Couch
This activity is designed to have students apply previous knowledge about Earth Science to investigate iron-nickel meteorites. Students should have previous knowledge of crystal size/cooling rate correlation in Earth rocks and previous knowledge of Earth's composition. Students will investigate meteorites (real or photographed with scale) using a series of guided questions. They will practice using observation and inference skills as well as data collection skills. Key words- activity, measurement, guided inquiry, astronomy, meteorites, hands-on, investigative, lab, crystal size, cooling rate, differentiation, planetary composition, planetary formation, observation, inference, correlation, space, geology, earth science, solar system, solar system formation

Modeling the Earth-Moon Orbital System
Mike Hansen, Linden School, Malden, MA mhansen@malden.mec.edu
Through constructing a physical model, students will come to understand that bodies in orbit and the objects they orbit actually both revolve around their common center of mass (barycenter).

On A Collision Course: The Moon
Madelyn Wenham
Impact craters are found on nearly all solid surface planets and satellites. Although this exercise simulates the impact process, it must be noted that the physical variables do not scale in a simple way to ...

Spacecraft Design for Interplanetary Travel
John Walsh
Students will design and build a reusable spacecraft for interplanetary travel.

Reaching for a Star... (and finding its diameter!)
Jan Davagian
The use of metric units and measuring skills are reviewed. Extreme distances are measured using a pinhole camera to set up ratios of similar triangles.



« Previous Page      Next Page »