Search the Site

Search across all the material in the Pedagogy in Action site. Use the boxes on the right to focus in on particular collections.


Help

Show all pages

Current Search Limits

Subject

showing only Physics Show all Subject

Results 1 - 20 of 134 matches

Being P-Waves and S-Waves part of Pedagogy in Action:Library:Role Playing:Examples
Teach students about P-waves and S-waves by having them model them with their own bodies.

Bubbles in Magmas part of Pedagogy in Action:Library:Teaching with SSAC:Examples
SSAC Physical Volcanology module. Students build a spreadsheet and apply the ideal gas law to model the velocity of a bubble rising in a viscous magma.

How Do We Estimate Magma Viscosity? part of Pedagogy in Action:Library:Teaching with SSAC:Examples
SSAC Physical Volcanology module. Students build a spreadsheet to examine how magma viscosity varies with temperature, fraction of crystals, and water content using the non-Arrhenian VFT model.

What is the Volume of the 1992 Eruption of Cerro Negro Volcano, Nicaragua? part of Pedagogy in Action:Library:Teaching with SSAC:Examples
SSAC Physical Volcanology module. Students build a spreadsheet to calculate the volume a tephra deposit using an exponential-thinning model.

Porosity and Permeability of Magmas part of Pedagogy in Action:Library:Teaching with SSAC:Examples
SSAC Physical Volcanology module. Students build a spreadsheet for an iterative calculation to find volume of bubbles and hence porosity, permeability and gas escape as a function of depth.

How Does Surface Deformation at an Active Volcano Relate to Pressure and Volume Change in the Magma Chamber? part of Pedagogy in Action:Library:Teaching with SSAC:Examples
SSAC Physical Volcanology module. Students build a spreadsheet to examine and apply the Mogi model for horizontal and vertical surface displacement vs. depth and pressure conditions in the magma chamber.

Sun Spot Analysis part of Pedagogy in Action:Library:Teaching with Data:Examples
Introductory students use Excel to graph monthly mean Greenwich sunspot numbers from 1749 to 2004 and perform a spectral analysis of the data using the free software program "Spectra".

Mass Balance Model part of Pedagogy in Action:Library:Mathematical and Statistical Models:Examples
Students are introduced to the concept of mass balance, flow rates, and equilibrium using an online interactive water bucket model.

Waves Through Earth: Interactive Online Mac and PC part of Pedagogy in Action:Library:Mathematical and Statistical Models:Examples
Students vary the seismic P and S wave velocity through each of four concentric regions of Earth and match "data" for travel times vs. angular distance around Earth's surface from the source to detector.

Slinky and Waves part of Pedagogy in Action:Library:Interactive Lecture Demonstrations:Examples
Use a Slinky to show:P and S waves, Wave reflection, and Standing waves in interactive lecture demonstration.

How are Flow Conditions in Volcanic Conduits Estimated? part of Pedagogy in Action:Library:Teaching with SSAC:Examples
SSAC Physical Volcanology module. Students build a spreadsheet to calculate velocity of rising magma in steady-state Plinian eruptions using conservation of mass and momentum.

How Do We Estimate Melt Density? part of Pedagogy in Action:Library:Teaching with SSAC:Examples
SSAC Physical Volcanology module. Students build spreadsheets to estimate melt density at high temperatures and pressures from the thermodynamic properties of silicates.

Lithospheric Density part of Pedagogy in Action:Library:Teaching with SSAC:Examples
Students learn about the weighted mean by building spreadsheets that apply this concept to the average density of the oceanic lithosphere.

Metric System Conversions: Process Oriented Guided Inquiry Learning (POGIL) activity part of MnSCU Partnership:PKAL-MnSCU Activities
This activity helps student learn to convert within the metric system and begin learning about process skill necessary for working in groups.

Graph Predictions for Position, Velocity and Acceleration part of Pedagogy in Action:Library:Just in Time Teaching:Examples
Graphical Just-in-Time-Teaching questions for use before classes in which students explore position, velocity and acceleration graphs.

Properties of Electrostatic Charge: Interactive Lecture Demonstration part of Pedagogy in Action:Library:Interactive Lecture Demonstrations:Examples
This activity is an interactive lecture demonstration format which can be used to teach the first lesson of electrostatics. Students will investigate conservation of charge, charge by contact, polarization of charge and charge by induction.

The Magic of Optics: Now you see it, now you don't part of Pedagogy in Action:Library:Interactive Lecture Demonstrations:Examples
A magical demonstration where a Pyrex tube vanishes in a beaker of mineral oil. Useful demonstration to introduce to concept of refraction (and/or partial reflection).

Introduction to Torques: A Question of Balance, Featuring the Sledge Hammer of the Sierra Madre part of Pedagogy in Action:Library:Interactive Lecture Demonstrations:Examples
Interactive Lecture Demonstrations to illustrate the nature of torques and on the balancing of torques in static equilibrium.

The Standard Model: Using CERN output graphics to identify elementary particles part of Pedagogy in Action:Library:Just in Time Teaching:Examples
After using the historical development of the Standard Model to develop introductory understanding, students link to OPAL and DELPHI data archives from CERN to identify and study the tracks from elementary particles.

Angular Momentum Experiment part of Pedagogy in Action:Library:Just in Time Teaching:Examples
After using the historical development of concepts of conserved motion to develop introductory understanding, students are directed to a series of activities to gain a better understanding of momentum, conservation of momenta, angular momentum, and conservation of angular momenta.

1 2 3 4 5 Next»