Pedagogy in Action > Library > Using an Earth System Approach > Earth System Science in a Nutshell > Earth System Science Courses

Earth System Science Courses


Help

Results 31 - 40 of 1440 matches

2004 Asian Earthquake and Tsunami Disaster Project part of Pedagogy in Action:Library:Cooperative Learning:Examples
Students are employees of a unit of the United Nations responsible for coordinating disaster relief after a major disaster (the 2004 Asian Earthquake and Tsunami) occurs. The agency needs to understand the situation in each country so that it can coordinate the work of various governments and NGO (nongovernmental organizations) working in the affected area.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Determining the Geologic History of Rocks from a Gravel Deposit part of Pedagogy in Action:Library:Cooperative Learning:Examples
Gravels deposited as a result of continental glaciation are used to teach introductory-level earth-science students the application of the scientific method in a cooperative learning mode which utilizes hands-on, minds-on analyses. Processes that involve erosion, transportation, and deposition of pebble- and cobble-sized clasts are considered by students in formulating and testing hypotheses.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Fracture Fundamentals: A Cheesy Analog part of Pedagogy in Action:Library:Interactive Lecture Demonstrations:Examples
This activity has students make small cuts in processed cheese food and then apply shear stress perpendicular or parallel to the cuts to see what sort of fracturing will occur.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

How Do We Estimate Magma Viscosity? part of Pedagogy in Action:Library:Teaching with SSAC:Examples
SSAC Physical Volcanology module. Students build a spreadsheet to examine how magma viscosity varies with temperature, fraction of crystals, and water content using the non-Arrhenian VFT model.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Bubbles in Magmas part of Pedagogy in Action:Library:Teaching with SSAC:Examples
SSAC Physical Volcanology module. Students build a spreadsheet and apply the ideal gas law to model the velocity of a bubble rising in a viscous magma.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Porosity and Permeability of Magmas part of Pedagogy in Action:Library:Teaching with SSAC:Examples
SSAC Physical Volcanology module. Students build a spreadsheet for an iterative calculation to find volume of bubbles and hence porosity, permeability and gas escape as a function of depth.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

What is the Volume of the 1992 Eruption of Cerro Negro Volcano, Nicaragua? part of Pedagogy in Action:Library:Teaching with SSAC:Examples
SSAC Physical Volcanology module. Students build a spreadsheet to calculate the volume a tephra deposit using an exponential-thinning model.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

What is the Relationship between Lava Flow Length and Effusion Rate at Mt Etna? part of Pedagogy in Action:Library:Teaching with SSAC:Examples
SSAC Physical Volcanology module. Students use Excel to determine a log-log relationship for flow length vs effusion rate and compare it with a theoretical expression for the maximum flow length.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

What is the Volume of a Debris Flow? part of Pedagogy in Action:Library:Teaching with SSAC:Examples
SSAC Physical Volcanology module. Students build a spreadsheet to estimate the volume of volcanic deposits using map, thickness and high-water mark data from the 2005 Panabaj debris flow (Guatemala).

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

How Does Surface Deformation at an Active Volcano Relate to Pressure and Volume Change in the Magma Chamber? part of Pedagogy in Action:Library:Teaching with SSAC:Examples
SSAC Physical Volcanology module. Students build a spreadsheet to examine and apply the Mogi model for horizontal and vertical surface displacement vs. depth and pressure conditions in the magma chamber.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.