Pedagogy in Action > Library > Using an Earth System Approach > Earth System Science in a Nutshell > Earth System Science Courses

Earth System Science Courses


Help

Results 31 - 40 of 1429 matches

What is the Relationship between Lava Flow Length and Effusion Rate at Mt Etna? part of Pedagogy in Action:Library:Teaching with SSAC:Examples
SSAC Physical Volcanology module. Students use Excel to determine a log-log relationship for flow length vs effusion rate and compare it with a theoretical expression for the maximum flow length.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

How Does Surface Deformation at an Active Volcano Relate to Pressure and Volume Change in the Magma Chamber? part of Pedagogy in Action:Library:Teaching with SSAC:Examples
SSAC Physical Volcanology module. Students build a spreadsheet to examine and apply the Mogi model for horizontal and vertical surface displacement vs. depth and pressure conditions in the magma chamber.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

What is the Volume of the 1992 Eruption of Cerro Negro Volcano, Nicaragua? part of Pedagogy in Action:Library:Teaching with SSAC:Examples
SSAC Physical Volcanology module. Students build a spreadsheet to calculate the volume a tephra deposit using an exponential-thinning model.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Porosity and Permeability of Magmas part of Pedagogy in Action:Library:Teaching with SSAC:Examples
SSAC Physical Volcanology module. Students build a spreadsheet for an iterative calculation to find volume of bubbles and hence porosity, permeability and gas escape as a function of depth.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Bubbles in Magmas part of Pedagogy in Action:Library:Teaching with SSAC:Examples
SSAC Physical Volcanology module. Students build a spreadsheet and apply the ideal gas law to model the velocity of a bubble rising in a viscous magma.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Oil Demand and Consumption part of Pedagogy in Action:Library:Process of Science:Examples
Data modeling activity using oil reserve and consumption data. Students predict when oil reserves meet or exceed reserves.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Applying Lessons Learned to the Volcanic Risk at Mt. Rainier part of Pedagogy in Action:Library:Jigsaws:Examples
In this jigsaw-method activity on subduction zone volcanism, students apply lessons learned from four historic eruptions to the volcanic hazards associated with Mt. Rainier in the Pacific Northwest.

The Anatomy of a Rate Law part of Pedagogy in Action:Library:Quantitative Writing:Examples
This assignment teaches geochemistry students to explain the mathematical forms of rate laws, and organize paragraphs in their writing assignments properly.

Writing a Wikipedia Genetic Disease Article part of Pedagogy in Action:Library:Teaching with Data:Examples
Writing a Wikipedia article about a genetic disease is a good culminating activity for a genetics course or module, as it requires synthesizing and interpreting a wide range of genetic information. This assignment also includes a potential service component, which is normally very difficult in genetics.

Long Term Ecological Resources part of Pedagogy in Action:Library:Teaching with Data:Examples
Students analyze data on temperature and precipitation collected from 26 different Long Term Ecological Research sites and compare them with annual net primary productivity. The students then form an ecological rule to explain their results.