select failed You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'SEELCT module.url FROM module, module_pages, module_nav_menu WHERE mod' at line 1 select failed You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'SEELCT module.url FROM module, module_pages, module_nav_menu WHERE mod' at line 1 select failed You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'SEELCT module.url FROM module, module_pages, module_nav_menu WHERE mod' at line 1 ConcepTest: Eccentricity and Temperature Distribution

The ComPADRE Collections

ConcepTest: Eccentricity and Temperature Distribution

ConcepTest questions by David McConnell , David Steer , Walter Borowski, Jeffrey Dick, Annabelle Foos, Jeffrey Knott, Alvin Konigsberg, Michelle Malone, Heidi McGrew, Kathie Owens, and Stephen Van Horn
This material was originally created for Starting Point:Introductory Geology
and is replicated here as part of the SERC Pedagogic Service.

Question:

Mars has a more eccentric orbit of the Sun than Earth. Mars is 20% closer to the Sun during its winter than it is during its summer. How would temperature distributions on Earth be affected if we had a similarly eccentric orbit that brought us much closer to the Sun during winter in the Northern Hemisphere?

a. Maximum temperatures would be higher during the winter season in the Northern Hemisphere.
b. Maximum temperatures would be higher during the winter season in the Southern Hemisphere.
c. Maximum temperatures would be higher during the winter seasons in both the Northern and Southern Hemispheres.

Student Responses:

No data yet. The correct response is A.

If you would like to help acquire more Before and After statistics for this example, please contact the authors (see link at top of page).

References and Notes: