# Browse Activities

# Pedagogy

- ConcepTests 10 matches
- Class Response Systems 2 matches
- Cooperative Learning 2 matches
- Demonstrations 16 matches
- Interactive Lectures 19 matches
- Just in Time Teaching 3 matches
- Large Classes 1 match
- Lecture 32 matches
- Quantitative Reasoning 3 matches
- Simulation of Data 1 match
- Teaching with Data 6 matches
- Teaching with Models 3 matches
- Mathematical and Statistical Models 3 matches
- Teaching with Visuals 5 matches
- Think-Pair-Share 2 matches

# Subject: Physics

Results 21 - 40 of **67 matches**

The Magic of Optics: Now you see it, now you don't part of Teaching with Interactive Demonstrations:Examples

A magical demonstration where a Pyrex tube vanishes in a beaker of mineral oil. Useful demonstration to introduce to concept of refraction (and/or partial reflection).

Introduction to Torques: A Question of Balance, Featuring the Sledge Hammer of the Sierra Madre part of Teaching with Interactive Demonstrations:Examples

Interactive Lecture Demonstrations to illustrate the nature of torques and on the balancing of torques in static equilibrium.

Elastic and Inelastic Collisions: The Case of the Happy and Sad Balls part of Teaching with Interactive Demonstrations:Examples

Interactive Lecture Demonstration to illustrate that impulses are larger in elastic collisions than in inelastic collisions if other factors are the same.

Understanding the Work Energy Theorem: In the lab or as lecture demonstration part of Teaching with Interactive Demonstrations:Examples

This series of questions before instruction, in-class peer instruction as students come to understanding, and visualization of an important mathematical relationship allow students to iterate and improve their understanding of work incrementally.

Experiment Problem in Kinematics: How Much Does it Take to Win the Race? part of Teaching with Interactive Demonstrations:Examples

In this activity, students are presented with two objects that have different constant speeds and that will race each other. The students must determine which object will win the race, as well as either how much time elapses between the objects crossing the finish line.

Graph Predictions for Position, Velocity and Acceleration part of Just in Time Teaching:Examples

Graphical Just-in-Time-Teaching questions for use before classes in which students explore position, velocity and acceleration graphs.

The Standard Model: Using CERN output graphics to identify elementary particles part of Just in Time Teaching:Examples

After using the historical development of the Standard Model to develop introductory understanding, students link to OPAL and DELPHI data archives from CERN to identify and study the tracks from elementary particles.

Angular Momentum Experiment part of Just in Time Teaching:Examples

After using the historical development of concepts of conserved motion to develop introductory understanding, students are directed to a series of activities to gain a better understanding of momentum, conservation of momenta, angular momentum, and conservation of angular momenta.

Introduction to Work and Energy: The Hopper Popper Surprise part of Teaching with Interactive Demonstrations:Examples

Understanding the Motion of a Harmonic Oscillator part of Teaching with Interactive Demonstrations:Examples

This inteactive lecture and series of demonstrations develops the concepts and vocabulary of oscillatory motion as it relates to the motion of a mass on a spring.

Virtual Photoelectric Lab part of Teaching with Data Simulations:Examples

This is a virtual lab activity on the photoelectric effect based on a Java applet simulation of the experiment.

ConcepTest: Eccentricity and Seasons part of ConcepTests:Examples

Mars has a more eccentric orbit of the Sun than Earth. Mars is 20% closer to the Sun during winter in its Northern hemisphere than it is during its summer. What would be the implications for the seasons on Earth if ...

ConcepTest: Sun Spot Activity part of ConcepTests:Examples

Sun spots, flares and other emissions from the Sun's surface can have a negative impact on electrical systems on Earth. What would be the implications for this type of solar activity if the Sun did not ...

ConcepTest: Jovian Planet Characteristics part of ConcepTests:Examples

The characteristics of four planets are listed below. Which planet is most likely to be classified as Jovian? a. Mainly rocky, volcanism, low gravity. b. Mainly rocky, no volcanism, high gravity. c. Mainly gaseous, ...

ConcepTest: Eccentricity and Temperature Distribution part of ConcepTests:Examples

Mars has a more eccentric orbit of the Sun than Earth. Mars is 20% closer to the Sun during its winter than it is during its summer. How would temperature distributions on Earth be affected if we had a similarly ...

ConcepTest: Rotation part of ConcepTests:Examples

It takes 24 hours—one day—for one complete rotation of Earth. How long would it take for the Sun to strike every location on the equator if Earth did not rotate on its axis? a. never b. one season c. 24 hours ...

ConcepTest: The Moons Orbit part of ConcepTests:Examples

Does the Moon have a geocentric or heliocentric type orbit? a. geocentric. b. heliocentric. c. neither.

ConcepTest: Relative Planet Ages part of ConcepTests:Examples

How old are other planets in the Universe in comparison to the planets in our Solar System? a. Other planets are older than the planets in our Solar System. b. Other planets are younger than the planets in our ...

Conservation of energy of while rolling down a hill part of Teaching with Data:Examples

Students analyze video clips of kids rolling down a hill on skates, scooters, and bikes to determine whether mechanical energy is conserved.

Measuring the coefficient of friction of a skater on ice part of Teaching with Data:Examples

Students use video analysis of ice skaters gliding across the ice to determine the coefficient of friction between the skates and the ice. Materials include instructions and six videos that can be used for analysis.