SERC > Site Guides > Quantitative Skills, Thinking, and Reasoning > Quantitative Activities

More Ways to Navigate

Projects and Collaborations
Find projects on which SERC is a leader or collaborator

Search all of SERC

Quantitative Skills, Thinking, and Reasoning Activities


Help

Results 21 - 30 of 443 matches

Carbon Dioxide Exercise
Rebecca Teed, Wright State University-Main Campus
Students work in groups, plotting carbon dioxide concentrations over time on overheads and estimating the rate of change over five years. -

CLEAN Selected This activity has been selected for inclusion in the CLEAN collection.
Learn more about this review process.

The Modern Atmospheric CO2 Record
Bob Mackay, Clark College
Students compare carbon dioxide (CO2) data from Mauna Loa Observatory, Barrow (Alaska), and the South Pole over the past 40 years to help them better understand what controls atmospheric CO2. -

Gold Star Panel Review This activity received a gold star rating from a Panel Peer Review.
See the activity page for details.

Analyzing the Antarctic Ozone Hole
LuAnn Dahlman
DATA: Total Ozone Mapping Spectrometer (TOMS) Images. TOOLS: ImageJ, Spreadsheet. SUMMARY: Animate and explore 10 years of Southern Hemisphere ozone images. Then measure and graph the area of the ozone hole over time.

Back-of-the-Envelope Calculations: Weight of Gold
Barb Tewksbury, Hamilton College
Question Let's suppose that you have a shoe box full of water (the box is waterproof, of course). The shoe box weighs about 9 kg (19.8 pounds). Suppose you emptied the box and filled it completely with rock ...

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Estimating Exchange Rates of Water in Embayments using Simple Budget Equations.
Keith Sverdrup, University of Wisconsin-Milwaukee
Simple budgets may be used to estimate the exchange of water in embayments that capitalize on the concept of steady state and conservation principals. This is especially true for bays that experience a significant exchange of freshwater. This exchange of freshwater may reduce the average salt concentration in the bay compared to seawater if it involves addition of freshwater from rivers, R, and/or precipitation, P. Alternatively, it may increase the average salt concentration in the bay compared to seawater if there is relatively little river input and high evaporation, E. Since freshwater input changes the salt concentration in the bay, and salt is a conservative material, it is possible to combine two steady state budgets for a bay, one for salt and one for water, to solve for the magnitude of the water flows that enter and exit the bay mouth. Students will make actual calculations for the inflow and outflow of water to Puget Sound, Washington and the Mediterranean Sea and compare them to actual measured values.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

How Many Is A Million?
Roger Steinberg, Del Mar College
Roger Steinberg, Department of Natural Sciences, Del Mar College Description To help students visualize the immensity of geologic time, or even the immensity of just one million years, I have created a very large ...

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

How Does Surface Deformation at an Active Volcano Relate to Pressure and Volume Change in the Magma Chamber?
Module by Peter LaFemina, Penn State, State College, PA. This cover page by Ali Furmall, University of South Florida, now at University of Oregon.
SSAC Physical Volcanology module. Students build a spreadsheet to examine and apply the Mogi model for horizontal and vertical surface displacement vs. depth and pressure conditions in the magma chamber.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

How Do We Estimate Magma Viscosity?
chuck connor
SSAC Physical Volcanology module. Students build a spreadsheet to examine how magma viscosity varies with temperature, fraction of crystals, and water content using the non-Arrhenian VFT model.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

Bubbles in Magmas
Module by Chuck Connor, University of South Florida, Tampa. This cover page by Ali Furmall, USF, now at U. Oregon.
SSAC Physical Volcanology module. Students build a spreadsheet and apply the ideal gas law to model the velocity of a bubble rising in a viscous magma.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.

What is the Volume of the 1992 Eruption of Cerro Negro Volcano, Nicaragua?
chuck connor
SSAC Physical Volcanology module. Students build a spreadsheet to calculate the volume a tephra deposit using an exponential-thinning model.

On the Cutting Edge Exemplary Collection This activity is part of the On the Cutting Edge Exemplary Teaching Activities collection.
Learn more about this review process.


« Previous Page      Next Page »