Linking Science and Social Issues

This project is a series of timed interactions among five courses that aims to increase awareness among potential teachers (undergraduates) and declared pre-service teachers (graduate education students) of their roles as civic agents in the classroom, particularly in Hampton Roads. Through collaboration with biology majors, environmental and marine science majors and computer science majors, pre-service teachers discover that science learning is more satisfying for their students when it centers around issues of value to their community and society at large. The Hampton team first proposed participation in SENCER because the pre-service teacher preparation curriculum did not have an integrated approach to science education. We began with the question:

With the emphasis in Virginia on teaching topics prescribed in the Virginia Standards of Learning, how successful will Hampton University pre-service teachers be in delivery of science content?

Conservation of riparian species and wetlands ecology is a content area that is 1) addressed by the Virginia K-12 science standards, 2) included in the biological science course undergraduates take in their first two years of study, and 3) of interest to students who live and work at the confluence of three rivers: the Hampton, James, and Elizabeth rivers. By using Riverscape as the unifying theme, students develop an awareness of how citizens address civic questions pertaining to the area near the Hampton River where they live, where they teach in clinical field placements, and where the impact of hurricanes, transportation on land and sea, and population growth pose civic and policy challenges for local residents. Over three years the course has explored specifically:

  • What environmental impact has human population growth had on the other populations common to the area? For example, has the mobility of the school age population due to the occupations of parents in the military, fishing industry, and shipbuilding, created a susceptibility to waterborne diseases?
  • What environmental safety issues do elementary school age children face? Two problems were identified: First, hazards due to recent hurricanes that caused loss of life, damaged property, and food spoilage. Second, pollution from landfill, highway runoff, and construction in residential areas close to schools limit recreational opportunities.
  • Finally, how do cities spend their revenues on environmental remediation or reclamation projects and how does this affect the school system budget? The students became more aware of the difficulty of resolving civic questions when what appear to be reasonable scientific solutions require the appropriation of limited financial resources.

In Riverscape, the biological, environmental and marine science majors and computer science majors are the core subject experts. Through the questions posed by the education majors, they see that the usefulness of their contributions will depend on their knowledge of basic science and their knowledge of how to apply that knowledge in an authentic setting. The education majors consider the curriculum choices they must make to teach science content that helps their K-6 students learn to interpret data that is integrated into their daily activities. The college students become aware of the responsibility that teachers have to comply with the policies dictated by their school boards, city councils, and the Virginia Department of Education.

The basic science is covered and connected to policy questions in strands through the participating courses, and those strands are brought together in the final website product created in ENG 218, Technical Communication.

The same graduate students are enrolled in EDU 608 and EDU 630. Before these students can begin to answer their guiding questions (see previous page) they must work with undergraduate students enrolled in BIO 408 a senior level research course, and ESC 203, Introduction to Environmental Science. ESC203, Introduction to Environmental Science (required for environmental science majors), addresses basic local ecology, investigating in the field and laboratory the interaction between organisms and their biotic and abiotic environment and focusing on human populations and their effects on the natural environment. BIO 408, Marsh Food Web Research (elective for biology majors), requires students to conduct hands-on ecological research in the field and laboratory; search the scientific literature for information related to the project; report results in acceptable CBE/CSE format; and make a collection of arthropods from the Hampton River study site for use in a K-6 classroom.

Interacting with students in the ESC 203 and BIO 408 courses allows education majors to refresh their basic science knowledge (acquired in their freshman or sophomore year) while practicing demonstrations and the practical consequences of working in the field to investigate impacts on the environment rather than in the classroom where so often students just hear about the environment. For example, using a kayak to take water samples for chemistry analysis means you might get wet! To study mosquitoes means you must have a successful capturing strategy.

What strategies do the courses use to both advance science education and foster civic engagement?

To introduce students and faculty to the SENCER approach, it was helpful to identify student characteristics of "agents of civic engagement". Determining student/faculty expertise with the policy issues impacting the riparian environment introduced us to community leaders not previously invited into education department classrooms and led us to identify potential collaborators in Hampton's School of Science. Having both of the chairs of Departments of Biological, Environmental and Marine Science as part of the team greatly increased our ability to connect learning to previous coursework, schedule field experiences, conduct lab experiences, and identify policy issues that could be addressed in one semester.

Table 1. The connections made among the courses.

Linking Science and Social Issues (Acrobat (PDF) 88kB Jul28 08)