Nanotechnology: Content and Context

Nanotechnology: Content and Context (Anthropology 235/Chemistry 235) as taught by Christopher Kelty and Kristen Kulinowski at Rice University

Abstract


Nanotechnology (NT) research has been the beneficiary of a level of government funding not seen since the Manhattan Project and the moon-shot program. Advocates claim that the new technology could greatly enhance human performance, transform manufacturing, provide cheap, clean energy, and shrink computers to nanoscopic dimension, while skeptics raise legitimate concerns about unintended negative consequences, such as the technology's potential to cause disease or environmental disruption. Sorting out and evaluating these claims and concerns, and shaping policy for the development of future nanotechnology applications, requires technical and scientific knowledge as well as an understanding of scientific research as a social and political process.

Nanotechnology: Content and Contexts has no pre-requisites and fulfils general education requirements in social science (for science majors) or science (for nonscience majors). It is a team-taught, cross-listed course that uses the emerging field of Nanotechnology to explore both scientific content and its social and policy contexts. The science and technical topics addressed include the mathematics of scale, microscopy, the synthesis of carbon-based nanomaterials, nanomachines, quantum dots, piezoelectric and photovoltaic nanomaterials, natural biomoters, and the applications of nanotechnology to medicine and environmental problems. The social and policy contexts explored include risk assessment, science funding, intellectual property, ethics of biotechnology, and environmental regulation. The two core faculty are joined by six other instructors who teach specific units in their areas of expertise, and there are occasional guest lecturers as well.

Several active learning strategies are used in this course, including role-play exercises, peer-led learning, classroom discussions, and in-class labs. During the course students research and build their own glossary of technical terms specific to NT. Assessment of student learning is supplemented by the use of the SALG (Student Assessment of Learning Gains) Instrument at the beginning and end of the course.






      Next Page »