# Activities

## Materials for Lab and Class

Help

# Subject: Geoscience

# Quantitative Skills

- Algebra 34 matches
- Arithmetic/Computation 100 matches
- Differential Equations and Integrals 20 matches
- Estimation 63 matches
- Fourier Series, Spectral Analysis 3 matches
- Fractions and Ratios 11 matches
- Gathering Data 7 matches
- Geometry and Trigonometry 46 matches
- Graphs 88 matches
- Logarithms/Exponential Functions 35 matches
- Models and Modeling 57 matches
- Probability and Statistics 76 matches
- Problem Solving 102 matches
- Scientific Notation 10 matches
- Units and Unit Conversions 56 matches
- Vectors and Matrices 9 matches

Results 41 - 50 of **255 matches**

What is the Volume of a Debris Flow? part of Pedagogy in Action:Partners:Spreadsheets Across the Curriculum:Physical Volcanology:Examples

chuck connor, University of South Florida-St. Petersburg

SSAC Physical Volcanology module. Students build a spreadsheet to estimate the volume of volcanic deposits using map, thickness and high-water mark data from the 2005 Panabaj debris flow (Guatemala).

How Do We Estimate Magma Viscosity? part of Pedagogy in Action:Partners:Spreadsheets Across the Curriculum:Physical Volcanology:Examples

chuck connor, University of South Florida-St. Petersburg

SSAC Physical Volcanology module. Students build a spreadsheet to examine how magma viscosity varies with temperature, fraction of crystals, and water content using the non-Arrhenian VFT model.

Bubbles in Magmas part of Pedagogy in Action:Partners:Spreadsheets Across the Curriculum:Physical Volcanology:Examples

Module by Chuck Connor, University of South Florida, Tampa. This cover page by Ali Furmall, USF, now at U. Oregon.

SSAC Physical Volcanology module. Students build a spreadsheet and apply the ideal gas law to model the velocity of a bubble rising in a viscous magma.

What is the Volume of the 1992 Eruption of Cerro Negro Volcano, Nicaragua? part of Pedagogy in Action:Partners:Spreadsheets Across the Curriculum:Physical Volcanology:Examples

chuck connor, University of South Florida-St. Petersburg

SSAC Physical Volcanology module. Students build a spreadsheet to calculate the volume a tephra deposit using an exponential-thinning model.

What is the Relationship between Lava Flow Length and Effusion Rate at Mt Etna? part of Pedagogy in Action:Partners:Spreadsheets Across the Curriculum:Physical Volcanology:Examples

chuck connor, University of South Florida-St. Petersburg

SSAC Physical Volcanology module. Students use Excel to determine a log-log relationship for flow length vs effusion rate and compare it with a theoretical expression for the maximum flow length.

Porosity and Permeability of Magmas part of Pedagogy in Action:Partners:Spreadsheets Across the Curriculum:Physical Volcanology:Examples

chuck connor, University of South Florida-St. Petersburg

SSAC Physical Volcanology module. Students build a spreadsheet for an iterative calculation to find volume of bubbles and hence porosity, permeability and gas escape as a function of depth.

Northwest Passage part of Cutting Edge:Enhance Your Teaching:Teaching Methods:Teaching with Google Earth:Examples

Glenn Richard, SUNY at Stony Brook

An investigation of changes in polar regions using Google Earth.

When is Dinner Served? Predicting the Spring Phytoplankton Bloom in the Gulf of Maine (College Level) part of Starting Point-Teaching Entry Level Geoscience:Teaching with GIS:Examples

Brian Welch

College-level adaptation of the Earth Exploration Toolbook chapter. Students explore the critical role phytoplankton play in the marine food web. -

Density of the Earth - How to Solve It part of Quantitative Skills:Activity Collection

Len Vacher, Dept of Geology, University of South Florida

This module addresses the real problem of determining the density of the Earth and invites the student to figure out how to solve the problem.

The Floating Lithosphere - Isostasy part of Quantitative Skills:Activity Collection

Len Vacher, Dept of Geology, University of South Florida

Students are asked to numerically and then analytically determine the relations governing the depth of compensation.