# Activities

## Materials for Lab and Class

Help

# Subject: Geoscience

# Quantitative Skills

- Algebra 34 matches
- Arithmetic/Computation 99 matches
- Differential Equations and Integrals 18 matches
- Estimation 62 matches
- Fourier Series, Spectral Analysis 1 match
- Fractions and Ratios 11 matches
- Gathering Data 6 matches
- Geometry and Trigonometry 46 matches
- Graphs 86 matches
- Logarithms/Exponential Functions 34 matches
- Models and Modeling 57 matches
- Probability and Statistics 73 matches
- Problem Solving 102 matches
- Scientific Notation 10 matches
- Units and Unit Conversions 55 matches
- Vectors and Matrices 8 matches

Results 31 - 40 of **250 matches**

How Do We Estimate Magma Viscosity? part of Pedagogy in Action:Partners:Spreadsheets Across the Curriculum:Physical Volcanology:Examples

chuck connor

SSAC Physical Volcanology module. Students build a spreadsheet to examine how magma viscosity varies with temperature, fraction of crystals, and water content using the non-Arrhenian VFT model.

Bubbles in Magmas part of Pedagogy in Action:Partners:Spreadsheets Across the Curriculum:Physical Volcanology:Examples

Module by Chuck Connor, University of South Florida, Tampa. This cover page by Ali Furmall, USF, now at U. Oregon.

SSAC Physical Volcanology module. Students build a spreadsheet and apply the ideal gas law to model the velocity of a bubble rising in a viscous magma.

Porosity and Permeability of Magmas part of Pedagogy in Action:Partners:Spreadsheets Across the Curriculum:Physical Volcanology:Examples

chuck connor

SSAC Physical Volcanology module. Students build a spreadsheet for an iterative calculation to find volume of bubbles and hence porosity, permeability and gas escape as a function of depth.

What is the Volume of the 1992 Eruption of Cerro Negro Volcano, Nicaragua? part of Pedagogy in Action:Partners:Spreadsheets Across the Curriculum:Physical Volcanology:Examples

chuck connor

SSAC Physical Volcanology module. Students build a spreadsheet to calculate the volume a tephra deposit using an exponential-thinning model.

What is the Relationship between Lava Flow Length and Effusion Rate at Mt Etna? part of Pedagogy in Action:Partners:Spreadsheets Across the Curriculum:Physical Volcanology:Examples

chuck connor

SSAC Physical Volcanology module. Students use Excel to determine a log-log relationship for flow length vs effusion rate and compare it with a theoretical expression for the maximum flow length.

What is the Volume of a Debris Flow? part of Pedagogy in Action:Partners:Spreadsheets Across the Curriculum:Physical Volcanology:Examples

chuck connor

SSAC Physical Volcanology module. Students build a spreadsheet to estimate the volume of volcanic deposits using map, thickness and high-water mark data from the 2005 Panabaj debris flow (Guatemala).

How Does Surface Deformation at an Active Volcano Relate to Pressure and Volume Change in the Magma Chamber? part of Pedagogy in Action:Partners:Spreadsheets Across the Curriculum:Physical Volcanology:Examples

Module by Peter LaFemina, Penn State, State College, PA. This cover page by Ali Furmall, University of South Florida, now at University of Oregon.

SSAC Physical Volcanology module. Students build a spreadsheet to examine and apply the Mogi model for horizontal and vertical surface displacement vs. depth and pressure conditions in the magma chamber.

Northwest Passage part of Cutting Edge:Enhance Your Teaching:Teaching Methods:Teaching with Google Earth:Examples

Glenn Richard, SUNY at Stony Brook

An investigation of changes in polar regions using Google Earth.

Air-sea Interactions: Activities in Oceanography part of Quantitative Skills:Activity Collection

Steve LaDochy, California State University, Los Angeles

This online set of activities help students learn properties of ocean waves, wind-wave relationships and properties of tsunamis.

Three-Point Problem by Simultaneous Linear Equations part of Quantitative Skills:Activity Collection

William Frangos, James Madison University

Students are introduced to the use of linear algebra in an intuitive and accessible way, through classroom activity and homework set. The familiar three-point problem is cast in terms of three dimensional analytic geometry, fostering understanding of mathematical models for simple geometric forms.