# Activities

## Materials for Lab and Class

Help

# Show all Resources

# Subject: Geoscience

# Quantitative Skills Show all Quantitative Skills

## Arithmetic/Computation

99 matchesResults 1 - 10 of **99 matches**

An Assessment of Hillslope Stability Using the Factor of Safety part of Quantitative Skills:Activity Collection

Laura Moore, Oberlin College

In this homework assignment students are asked to consider the balance of forces on a hill slope using the Factor of Safety.

Calculation of your personal carbon footprint part of Cutting Edge:Topics:Energy:Energy Activities

Scott Giorgis, University of Wisconsin-Madison

This worksheet walks the students through the steps for calculating their personal carbon footprint. Additionally it helps them consider options for reducing their carbon footprint and the potential costs of those ...

Earthquake Shaking and Damage part of Quantitative Skills:Activity Collection

Eric Baer, Highline College

This student homework and problem set has students quantitatively earthquake hazard, shaking and damage.

Modeling the interior of the Earth using Seismic Waves part of Quantitative Skills:Activity Collection

Eric Baer, Highline College

Students use a variety of tools to explore the interior of the Earth in this inquiry activity.

Estimating Exchange Rates of Water in Embayments using Simple Budget Equations. part of Quantitative Skills:Activity Collection

Keith Sverdrup, University of Wisconsin-Milwaukee

Simple budgets may be used to estimate the exchange of water in embayments that capitalize on the concept of steady state and conservation principals. This is especially true for bays that experience a significant exchange of freshwater. This exchange of freshwater may reduce the average salt concentration in the bay compared to seawater if it involves addition of freshwater from rivers, R, and/or precipitation, P. Alternatively, it may increase the average salt concentration in the bay compared to seawater if there is relatively little river input and high evaporation, E. Since freshwater input changes the salt concentration in the bay, and salt is a conservative material, it is possible to combine two steady state budgets for a bay, one for salt and one for water, to solve for the magnitude of the water flows that enter and exit the bay mouth. Students will make actual calculations for the inflow and outflow of water to Puget Sound, Washington and the Mediterranean Sea and compare them to actual measured values.

Two streams, two stories... How Humans Alter Floods and Streams part of Quantitative Skills:Activity Collection

Eric Baer, Highline College

An activity/lab where students determine the changes in 100-year flood determinations for 2 streams over time.

Porosity and Permeability of Magmas part of Pedagogy in Action:Partners:Spreadsheets Across the Curriculum:Physical Volcanology:Examples

chuck connor

SSAC Physical Volcanology module. Students build a spreadsheet for an iterative calculation to find volume of bubbles and hence porosity, permeability and gas escape as a function of depth.

What is the Volume of a Debris Flow? part of Pedagogy in Action:Partners:Spreadsheets Across the Curriculum:Physical Volcanology:Examples

chuck connor

SSAC Physical Volcanology module. Students build a spreadsheet to estimate the volume of volcanic deposits using map, thickness and high-water mark data from the 2005 Panabaj debris flow (Guatemala).

How Does Surface Deformation at an Active Volcano Relate to Pressure and Volume Change in the Magma Chamber? part of Pedagogy in Action:Partners:Spreadsheets Across the Curriculum:Physical Volcanology:Examples

Module by Peter LaFemina, Penn State, State College, PA. This cover page by Ali Furmall, University of South Florida, now at University of Oregon.

SSAC Physical Volcanology module. Students build a spreadsheet to examine and apply the Mogi model for horizontal and vertical surface displacement vs. depth and pressure conditions in the magma chamber.

How Do We Estimate Magma Viscosity? part of Pedagogy in Action:Partners:Spreadsheets Across the Curriculum:Physical Volcanology:Examples

chuck connor

SSAC Physical Volcanology module. Students build a spreadsheet to examine how magma viscosity varies with temperature, fraction of crystals, and water content using the non-Arrhenian VFT model.