# Examples

# Show all pages

Results 1 - 10 of **18 matches**

How Do We Estimate Magma Viscosity? part of Pedagogy in Action:Partners:Spreadsheets Across the Curriculum:Physical Volcanology:Examples

SSAC Physical Volcanology module. Students build a spreadsheet to examine how magma viscosity varies with temperature, fraction of crystals, and water content using the non-Arrhenian VFT model.

What is the Relationship between Lava Flow Length and Effusion Rate at Mt Etna? part of Pedagogy in Action:Partners:Spreadsheets Across the Curriculum:Physical Volcanology:Examples

SSAC Physical Volcanology module. Students use Excel to determine a log-log relationship for flow length vs effusion rate and compare it with a theoretical expression for the maximum flow length.

Porosity and Permeability of Magmas part of Pedagogy in Action:Partners:Spreadsheets Across the Curriculum:Physical Volcanology:Examples

SSAC Physical Volcanology module. Students build a spreadsheet for an iterative calculation to find volume of bubbles and hence porosity, permeability and gas escape as a function of depth.

How Does Surface Deformation at an Active Volcano Relate to Pressure and Volume Change in the Magma Chamber? part of Pedagogy in Action:Partners:Spreadsheets Across the Curriculum:Physical Volcanology:Examples

SSAC Physical Volcanology module. Students build a spreadsheet to examine and apply the Mogi model for horizontal and vertical surface displacement vs. depth and pressure conditions in the magma chamber.

What is the Volume of the 1992 Eruption of Cerro Negro Volcano, Nicaragua? part of Pedagogy in Action:Partners:Spreadsheets Across the Curriculum:Physical Volcanology:Examples

SSAC Physical Volcanology module. Students build a spreadsheet to calculate the volume a tephra deposit using an exponential-thinning model.

Bubbles in Magmas part of Pedagogy in Action:Partners:Spreadsheets Across the Curriculum:Physical Volcanology:Examples

SSAC Physical Volcanology module. Students build a spreadsheet and apply the ideal gas law to model the velocity of a bubble rising in a viscous magma.

Tale of Two Cities (and two hurricanes): New Orleans part of Cutting Edge:Environmental Geology:Activities

This is an activity that uses the spreadsheet program Excel to explore the origins of subsidence in New Orleans. There are two versions. The first is a traditional Spreadsheets Across the Curriculum (SSAC) module ...

How Do We Estimate Melt Density? part of Pedagogy in Action:Partners:Spreadsheets Across the Curriculum:Physical Volcanology:Examples

SSAC Physical Volcanology module. Students build spreadsheets to estimate melt density at high temperatures and pressures from the thermodynamic properties of silicates.

Mined-Over Matter: Remembering Copper Mining at Keweenaw National Historic Park, Upper Peninsula Michigan part of Pedagogy in Action:Partners:Spreadsheets Across the Curriculum:Geology of National Parks:Examples

Spreadsheets Across the Curriculum/Geology of National Parks module. Students calculate the amount of rock removed and the value of copper produced at the great Keweenaw District up to 1925.

How are Flow Conditions in Volcanic Conduits Estimated? part of Pedagogy in Action:Partners:Spreadsheets Across the Curriculum:Physical Volcanology:Examples

SSAC Physical Volcanology module. Students build a spreadsheet to calculate velocity of rising magma in steady-state Plinian eruptions using conservation of mass and momentum.