## AP/IB/Honors Physics Activity Browse

Help

# Show all items

## Grade Level: College Lower (13-14)

showing only*College Lower (13-14) > Introductory Level*Show all Grade Level: College Lower (13-14)

# Subject: Physics

# Grade Level: College Lower (13-14) Show all Grade Level: College Lower (13-14)

## College Lower (13-14) > Introductory Level

92 matches# Resource Type: Activities

# Location Show all Location

- Direct Measurement Videos 13 matches
- Earth and Space Science 1 match
- Pedagogy in Action 52 matches
- Quantitative Skills 1 match
- Starting Point-Teaching Entry Level Geoscience 20 matches
- Starting Point: Teaching and Learning Economics 1 match
- Teacher Preparation 3 matches
- Visualizing the Liberal Arts 1 match

Results 1 - 20 of **92 matches**

Density, Buoyancy and Convection part of Teacher Preparation:Resource Collections:Activities

This 3-hour hands-on guided-discovery lab activity teaches students the concepts of density, buoyancy, thermal expansion and convection.

Being P-Waves and S-Waves part of Starting Point-Teaching Entry Level Geoscience:Role Playing:Examples

Teach students about P-waves and S-waves by having them model them with their own bodies. -

Geologic Time Calculations part of Quantitative Skills:Activity Collection

Radiometric age determination using parent/daughter composition and a radiometric decay curve.

Waves Through Earth: Interactive Online Mac and PC part of Starting Point-Teaching Entry Level Geoscience:Mathematical and Statistical Models:Mathematical and Statistical Models Examples

Students vary the seismic P and S wave velocity through each of four concentric regions of Earth and match "data" for travel times vs. angular distance around Earth's surface from the source to ...

Mass Balance Model part of Starting Point-Teaching Entry Level Geoscience:Mathematical and Statistical Models:Mathematical and Statistical Models Examples

Students are introduced to the concept of mass balance, flow rates, and equilibrium using an online interactive water bucket model. -

Sun Spot Analysis part of Starting Point-Teaching Entry Level Geoscience:Teaching with Data:Examples

Introductory students use Excel to graph monthly mean Greenwich sunspot numbers from 1749 to 2004 and perform a spectral analysis of the data using the free software program "Spectra". -

Slinky and Waves part of Starting Point-Teaching Entry Level Geoscience:Interactive Lecture Demonstrations:Examples

Use a Slinky to show:P and S waves, Wave reflection, and Standing waves in interactive lecture demonstration. -

Learning to Think about Gravity: Newtons's Theory part of comPADRE Pedagogic Library:Interactive Lectures:Examples

The purpose of this exercise is to learn how to think about gravity, learn about scientific methodology, and transition from the Aristotelian to the Newtonian understanding of gravity. -

Models of the Hydrogen Atom part of comPADRE Pedagogic Library:Interactive Lectures:Examples

In this interactive lecture, models of the hydrogen atom are explored using an online Java applet. The exploration leads to qualitative and quantitative analysis of energy transitions. -

Helping Students Discover Total Internal Reflection part of comPADRE Pedagogic Library:Interactive Lectures:Examples

Students learn the basic relationship of Snell's Law, practice applying it to a situation, then are given another situation where it "doesn't work."??? This situation turns out to be one in ...

The Transformer: Simulation Lecture Demo part of comPADRE Pedagogic Library:Interactive Lectures:Examples

The activity presents an interactive lecture demonstration of the operation of a transformer using a simulation. -

Think-Pair-Share Analysis of the Operation of a Metal Detector part of comPADRE Pedagogic Library:Interactive Lectures:Examples

The activity presents a Think-Pair-Share analysis of a metal detector including a simulation. -

Work: pre, during and post class questions part of comPADRE Pedagogic Library:Interactive Lectures:Examples

This series of questions before instruction, in-class peer instruction, and post-instruction allow students to iterate and improve their understanding of work incrementally. -

Motion Concepts: Displacement, velocity, & acceleration graphs part of comPADRE Pedagogic Library:Interactive Lectures:Examples

Students often struggle with motion concepts. These activities focus on the graphical representations of displacement, velocity, and acceleration given a number of situations of an object moving along the x-axis. ...

Learning to Think about Gravity II: Aristotle to Einstein part of comPADRE Pedagogic Library:Interactive Lectures:Examples

The purpose of this exercise is to learn how to think about gravity, learn about scientific methodology, and transition from the Aristotelian to Newtonian to Einsteinian understanding of gravity. -

Projectile and Satellite Orbits part of comPADRE Pedagogic Library:Interactive Lectures:Examples

Gravitation introductory activity with interesting animation. The activity allows the student to revile the connection between the initial speed and the shape of satellite orbit. -

Science on a Skateboard - Applications of Newton's Third Law part of comPADRE Pedagogic Library:Interactive Lectures:Examples

A think, pair, share activity with Socratic questioning to help students begin to understand rocket propulsion. -

Will the egg break? part of comPADRE Pedagogic Library:Interactive Lectures:Examples

This is a discrepant event that can be used to help students understand applications of the momentum-impulse theorem. Students are first asked to predict and hypothesize what will happen when an egg is thrown into ...

Experiment Problem in Kinematics: How Much Does it Take to Win the Race? part of comPADRE Pedagogic Library:Teaching with Interactive Demonstrations:Examples

In this activity, students are presented with two objects that have different constant speeds and that will race each other. The students must determine which object will win the race, as well as either how much time elapses between the objects crossing the finish line.

Understanding the Work Energy Theorem: In the lab or as lecture demonstration part of comPADRE Pedagogic Library:Teaching with Interactive Demonstrations:Examples

This series of questions before instruction, in-class peer instruction as students come to understanding, and visualization of an important mathematical relationship allow students to iterate and improve their understanding of work incrementally.