## AP/IB/Honors Physics Activity Browse

Help

# Show all items

# Subject: Physics

# Grade Level: College Lower (13-14)

- 25 matches General/Other
- Introductory Level 21 matches

# Resource Type: Activities Show all Resource Type: Activities

## Activities > Lab Activity

35 matches# Location Show all Location

Results 1 - 20 of **35 matches**

Density, Buoyancy and Convection part of Teacher Preparation:Resource Collections:Activities

This 3-hour hands-on guided-discovery lab activity teaches students the concepts of density, buoyancy, thermal expansion and convection.

Being P-Waves and S-Waves part of Starting Point-Teaching Entry Level Geoscience:Role Playing:Examples

Teach students about P-waves and S-waves by having them model them with their own bodies. -

Wave Interference part of Cutting Edge:Deep Earth:Activities

This activity engages students in the exploration of interference between sinusoidal wave forms. They use an interactive applet to manipulate the phase, wavelength, amplitude, and phase velocity of two waveforms ...

The Floating Lithosphere - Isostasy part of Quantitative Skills:Activity Collection

Students are asked to numerically and then analytically determine the relations governing the depth of compensation.

Waves Through Earth: Interactive Online Mac and PC part of Starting Point-Teaching Entry Level Geoscience:Mathematical and Statistical Models:Mathematical and Statistical Models Examples

Students vary the seismic P and S wave velocity through each of four concentric regions of Earth and match "data" for travel times vs. angular distance around Earth's surface from the source to ...

Mass Balance Model part of Starting Point-Teaching Entry Level Geoscience:Mathematical and Statistical Models:Mathematical and Statistical Models Examples

Students are introduced to the concept of mass balance, flow rates, and equilibrium using an online interactive water bucket model. -

The Floating Lithosphere - Eureka! part of Quantitative Skills:Activity Collection

In this module, students examine Archimede's Principle in general and as it applies to Isostacy.

Sun Spot Analysis part of Starting Point-Teaching Entry Level Geoscience:Teaching with Data:Examples

Introductory students use Excel to graph monthly mean Greenwich sunspot numbers from 1749 to 2004 and perform a spectral analysis of the data using the free software program "Spectra". -

Rutherford's Model of the Atom part of comPADRE Pedagogic Library:Interactive Lectures:Examples

Students are asked think-pair-share questions to predict the interaction of alpha particles fired toward the nucleus of an atom. An online applet is used to illustrate the interaction and test students' ideas ...

Models of the Hydrogen Atom part of comPADRE Pedagogic Library:Interactive Lectures:Examples

In this interactive lecture, models of the hydrogen atom are explored using an online Java applet. The exploration leads to qualitative and quantitative analysis of energy transitions. -

Helping Students Discover Total Internal Reflection part of comPADRE Pedagogic Library:Interactive Lectures:Examples

Students learn the basic relationship of Snell's Law, practice applying it to a situation, then are given another situation where it "doesn't work."??? This situation turns out to be one in ...

Measuring voltage and current in a DC circuit part of comPADRE Pedagogic Library:Interactive Lectures:Examples

These exercises target student misconceptions about how to properly measure voltage and current in simple DC circuits by letting them investigate different meter arrangements without fear of damaging equipment. ...

Learning to Think about Gravity II: Aristotle to Einstein part of comPADRE Pedagogic Library:Interactive Lectures:Examples

The purpose of this exercise is to learn how to think about gravity, learn about scientific methodology, and transition from the Aristotelian to Newtonian to Einsteinian understanding of gravity. -

Work: pre, during and post class questions part of comPADRE Pedagogic Library:Interactive Lectures:Examples

This series of questions before instruction, in-class peer instruction, and post-instruction allow students to iterate and improve their understanding of work incrementally. -

Learning to Think about Gravity: Newtons's Theory part of comPADRE Pedagogic Library:Interactive Lectures:Examples

The purpose of this exercise is to learn how to think about gravity, learn about scientific methodology, and transition from the Aristotelian to the Newtonian understanding of gravity. -

Properties of Electrostatic Charge: Interactive Lecture Demonstration part of comPADRE Pedagogic Library:Teaching with Interactive Demonstrations:Examples

This activity is an interactive lecture demonstration format which can be used to teach the first lesson of electrostatics. Students will investigate conservation of charge, charge by contact, polarization of charge and charge by induction.

Graph Predictions for Position, Velocity and Acceleration part of comPADRE Pedagogic Library:Just in Time Teaching:Examples

Graphical Just-in-Time-Teaching questions for use before classes in which students explore position, velocity and acceleration graphs.

Introduction to Torques: A Question of Balance, Featuring the Sledge Hammer of the Sierra Madre part of comPADRE Pedagogic Library:Teaching with Interactive Demonstrations:Examples

Interactive Lecture Demonstrations to illustrate the nature of torques and on the balancing of torques in static equilibrium.

Elastic and Inelastic Collisions: The Case of the Happy and Sad Balls part of comPADRE Pedagogic Library:Teaching with Interactive Demonstrations:Examples

Interactive Lecture Demonstration to illustrate that impulses are larger in elastic collisions than in inelastic collisions if other factors are the same.

Understanding the Work Energy Theorem: In the lab or as lecture demonstration part of comPADRE Pedagogic Library:Teaching with Interactive Demonstrations:Examples

This series of questions before instruction, in-class peer instruction as students come to understanding, and visualization of an important mathematical relationship allow students to iterate and improve their understanding of work incrementally.