Integrate > Workshops > Teaching the Methods of Geoscience > Activity Collection

Activity descriptions for teaching geoscientific thinking

These activity descriptions were submitted by faculty in preparation for the Teaching the Methods of Geoscience workshop in June 2012. In some cases, participants submitted a supplement calling out the ways in which the activities explicitly addressed teaching geoscientific thinking for a course they had previously submitted.

If you would like to add to this collection by contributing an activity, please fill out the Activity Submission Form or the Activity Supplement Form if you wish to supplement an activity you have previously submitted.


Show all pages

Current Search Limits


showing only Geoscience Show all Subject

Results 1 - 10 of 15 matches

Lahar Risk Assessment
Declan De Paor, Old Dominion University
Students act as first responders assessing Lahar risks associated with eruptions. Teacher sets an alert placemark on the Google Earth web browser plug-in and gives students X minutes to decide whether to evacuate a down-slope town. Students collaborate by text messages.

Exploring Evidence of Plate Tectonics Using GeoMapApp
Sean Cornell, Shippensburg University of Pennsylvania
This activity requires students to explore a range of datasets that help substantiate Plate Tectonic Theory. Students investigate plate tectonic environments (convergent, divergent, transform boundaries), topography/bathymetry of continents and ocean basins, the distribution and pattern of earthquakes, the distribution of volcanoes, as well as ages of the sea-floor, and more.

My Geologic Address: Locating Oneself in Geologic Time and Process
Kip Ault, Lewis and Clark College
Students locate their homes on local, regional, and global scale geologic maps. They build up an "address" describing their location in geological terms based on the features of the maps, from local bedrock to regional and global tectonic features.

Exploring the nature of geoscience using cartoon cards
Anne Egger, Central Washington University
In this activity, students work in groups to put a set of cartoon cards in order, much in the way that we might assemble a geologic history. The primary goal of the activity is to explore the nature of science in general and the nature of geoscience or historical science specifically, without requiring any content knowledge.

Introduction to the methods of geoscience
Anne Egger, Central Washington University
In this activity, students are introduced to the methods of inquiry in the Earth sciences and how they differ from what is classically taught in school science.

Transport of heavy metals in the Clark Fork River
Kathleen Harper, University of Montana-Missoula, The
This is an activity about transport of sediment contaminated by copper, arsenic, and other heavy metals that was deposited into the Clark Fork River channel as the result of historical mining activity. The Clark Fork River between Butte and Milltown, Montana has been the focus of several large superfund projects designed to address the impacts of this legacy of mining in the watershed. This activity is used in an introductory physical geology lab (primarily non-majors) with students who may have limited experience working with quantitative analysis and analyzing graphs.

Measuring the Campus Green
Paul Vincent, Valdosta State University
Students use basic tools to measure the size of one-quarter acre.

Discovering the Principles of Relative Age Determination – a Think-Pair-Share In-Class Activity
James Ebert, SUNY College at Oneonta
In this in-class activity, students are challenged to identify rock units and geologic features and determine the relative ages of these features without prior instruction in the classical methods of relative age determination.

Accuracy, Precision, and Topographic Data
Scott Linneman, Western Washington University
This jigsaw style exercise challenges new geomorphology students to collect topographic data and analyze its accuracy and precision.

Reasons for the Seasons
Jeff Thomas, Central Connecticut State University
The inquiry method and meteorological and astronomical online data can be used to elicit the inconsistencies of students' naïve ideas about the "real" reasons for the seasons. The first phase of this two-part investigation uses online meteorological data to identify factors that might explain differences of seasonal temperatures among cities These factors are used to hypothesize why differences of seasonal temperatures occur among cities. During the second phase, the variables and hypotheses that were previously identified in part one are used to design and conduct an inquiry-oriented investigation. Astronomical data is used as part of the investigation to "test" students' hypotheses— conclusions are drawn then communicated.

1 2 Next»

« Previous Page      Next Page »