1. The resulting phase diagram is shown below. (Nothing awkward here, hopefully, if you mastered DRAWPD)
2. Starting with bi + sill = g + cd + liq, and knowing that an extra phase (to bi, sill, g, cd, liq) is involved at an invariant, it is a matter of adding, in turn liq and opx to this assemblage, and calculating the invariants ([opx] and [H2O]).

Schreinemakers on those invariants make “sense“, with [opx] stable at the solidus, and [H2O] stable at higher P, and bi + sill = g + cd + liq stable between them. Looking to see if any of the univariants from these two invariants cross (and so therefore generating new invariants, if they share sufficient phases), we discover that [sill] is a stable invariant.

The final Figure is shown below.
3. Having been systematic (and careful), we get