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Schreinemakers' method is a geometric approach used to determine the relationships
of reaction curves that intersect at an invariant point in multicomponent systems.
This method produces topologically correct bundles or sequences of reactions around
an invariant point, and can be applied to a wide variety of phase diagrams such as
P-T, T-X, activity-activity, etc. The method is fully described in Zen (1966,
Construction of Pressure-Temperature Diagrams for Multicomponent Systems after
the Method of Schreinemakers -- A Geometric Approach.  U.S. Geol. Surv. Bull. 1225,
56p.), and the basics are presented below.

Examples of Invariant Points and Bundles of Reactions

Figure 1.  This example of an invariant
point in P-T space includes reactions
involving enstatite, corundum, cordierite,
forsterite, and spinel. In this example, all
reactions have two phases on each side,
but that is not always the case.  As is
traditionally done, the reactions have been
labeled by putting the "missing" phase(s) in
parentheses at the end of the reaction
curve.

Figure 2. This example of an invariant point
in P-T space includes reactions involving
pyrophyllite, diaspore, zoisite, margarite,
kyanite and H2O. As is traditionally done,
the reactions have been labeled by putting
the "missing" phase(s) in parentheses at
the end of the reaction curve. Note that
there are two degenerate reactions at this
invariant point (reactions involving only 4
phases). They are the nearly vertical
(Mg)/(Zo) reaction, and the nearly
horizontal (H2O)/(Py) reaction.

Figure 3.  This example of an invariant
point in T-X space includes reactions
involving tremolite, calcite, dolomite,
diopside, quartz, CO2 and H2O. As is
traditionally done, the reactions have been
labeled by putting the "missing" phase(s) in
parentheses at the end of the reaction
curve. Analyzing T-X diagrams using the
Schreinemakers approach is a bit different
than analyzing a P-T diagram because T-X
diagrams imply the presence of H2O and
CO2. Note that the (Tr)(Cc) reaction is
degenerate; it involves fewer phases than
the others.

Start with the Phase Rule (P + F = C + 2)

The phase rule is P + F = C + 2.  

P, F, and C refer to the number of phases present, the degrees of freedom, and the
number of system (chemical) components. An invariant point (where reactions
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intersect) has 0 degrees of freedom (F=0), a reaction line has 1 degree of freedom
(F=1), and a divariant field between reactions has 2 degrees of freedom (F=2).

For a P-T diagram, what the phase rule tells us is that:

•Invariant points occur at a fixed P and T. (You are NOT free to vary either if you
wish to stay at the point.)

•Reaction lines occur over a range of P and T, but the two cannot be varied
independently. (You are free to change either P or T, but once you do that, the
value of the other is fixed at a particular value or you will not stay on the line.)

•Fields between reactions have two degrees of freedom. (You can vary both P and
T, within limits, independently and you will still stay in the field.

Corollaries to the phase rule are that, for an "n" component system (C = n):

•There are n+2 phases related by univariant reactions (F=1) around an invariant
point (F=0).

•In the general case, there are n+2 univariant reaction curves that intersect at the
invariant point; each reaction is represented by a univariant curve.

•In the general case, there are n+1 phases involved in each univariant reaction.

•There are n phases stable in each divariant field (F=2) and there are n+2
divariant fields.

Phase Rule ==> (P + F = C + 2) : What does it mean?
(This box talks only about P-T diagrams but the similar principles apply to T-X and other kinds of phase diagrams.)

•Invariant points occur at a fixed P and T. (You are free to vary either if you wish to stay at the
point.)

•Reaction lines occur over a range of P and T, but the two cannot be varied independently. (You are
free to change either P or T, but once you do that, the value of the other is fixed at a particular
value or you will not stay on the line.)

•Fields between reactions have two degrees of freedom. (You can vary both P and T, within limits,
independently and you will still stay in the field.
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•Special case:  If one (or more) of the reactions are degenerate, the reaction(s)
will include fewer than n+1 phases, there will be fewer than n+2 reaction curves,
and fewer than n+2 divariant fields. (Degenerate reactions are those that can be
described with fewer components than the overall system, see below.)  If
degenerate reactions are involved at an invariant point, it may appear that there
are too few univariant curves because two or more curves may a) be collinear on
opposite sides of the invariant point and thus appear to be the same curve, or b)
may be superimposed on top of each other, so a single curve may represent
reactions with two or more phases absent).

Other observations:

•Reaction curves involving n+1 phases cannot pass through an invariant point
because crossing other reaction curves means that some of the phases or
assemblages become unstable. A reaction is said to be metastable in space where
product or reactant minerals or assemblages are unstable. (Metastable curves are
sometime plotted as dashed lines but for clarity are usually omitted from phase
diagrams.)

•Another consequence of these relationships is that a given mineral assemblage is
limited to an arc of <=180o.  Again, this is because the stability field of a mineral
assemblage will be cut off by another reaction (see details about the
Morey-Schreinemakers Rule in Zen, 1966).

•Degenerate reactions may, or may not, pass through an invariant point. Because a
degenerate reaction is actually depicting 2 (or more) phase absent curves, these
can be arranged in two ways: 1) "stable on stable", which means that the two
reactions are superposed directly on top of each other (and thus terminate at the
invariant point but with two phase absent labels on one end of the curve), or 2)
"stable on metastable" which means each reaction is superposed on the metastable
extension of the other, so the appearance is that the reaction curve passes
direclty through the invariant point (but the ends of the curves are each labeled
with a different phase absent). In Example 3, above, the (Tr)(Cc) reaction is an
example of a stable on stable degenerate reaction. In Example 2, above, the
nearly horizontal (H2O)/(Py) reaction is an example of a stable on metastable
degenerate reaction. 

One Component Systems
Most of the bulleted relationships (above) can be readily seen in the simple one
component system (C = n = 1) Al2SiO5 (FIgure 4).
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The phases andalusite, sillimanite and
kyanite may coexist (n+2 phases) at an
invariant point. The phases are related by 3
(n+2) univariant reaction curves, each
involving 2 (n+1) phases.  The reactions limit
3 (n+1) divariant fields, each of which
contains either andalusite, kyanite or
sillimanite (n phases).

All three univariant reactions stop at the
invariant point because they become
metastable beyond the point. Their
extensions beyond the invariant point could have been plotted as dashed lines but it
serves no useful purpose in this case.

Multicomponent Systems
In multicomponent systems, when two univariant reactions in a given system cross,
they create an invariant point provided the total number of phases involved does not
exceed C+2 (the number of system components + 2). If, however, the two reactions
belong to different systems, or if there are too many phases between the two, the
reactions may cross without creating an invariant point (see Figure 5).

When two univariant reactions intersect at an invariant point, additional reactions
also must pass through that point. Some may be stable on both sides of the point,
some may be stable on one side only, and some may be entirely metastable. The
sequence of reactions around the invariant point, and their stability or metastability,
depend on the compositional relationships of the phases involved.

Figure 4.  The aluminosilicate phase diagram: one
component (Al2SiO5), three univariant reactions involving
three phases (andalusite, kyanite, sillimanite)

Figure 5.  These two examples show reactions crossing, but
they do not make an invariant point. In the first example
(left), the two reactions take place in different chemical
systems. One includes Mg, the other does not. One includes
Al, the other does not. The second example involves two
reactions in the CaO-Al2O3-SiO2 system, but there are 6
phases between the two. The phase rule says that an
invariant point for a 3 component system may only involve
5 phases. These are both examples of what are called
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Let's look again at the original three
examples (FIgures 1-3, above).

•For each example, we could start with any
two reactions. Adding and subtracting them
would yield the others.

•In the first example (Figure 6), the system
contains 3 components (C=3: MgO-Al2O3-SiO2).
Each reaction involves 4 phases. The
invariant point involves 5 phases. 3 phases
are stable in each divariant field.

•In Figure 7, the system contains 4
components (C=4: CaO-Al2O3-SiO2-H2O). Each
reaction involves 5 phases, except reaction 1,
which is degenerate. The invariant point
involves 6 phases. 4 phases are stable in each
divariant field.

•In Figure 8, the system contains 5
components (C=5: CaO-MgO-SiO2-H2O-CO2).
This example is, however, different from the
previous two because it is a T-X diagram. For
a T-X diagram, pressure is held constant and
the phase rule is modified to be C + 1 = P + F.
However, H2O and CO2 are together counted
as a single phase, because they mix to form
one fluid. Normal univariant reactions, then,
involve 5 phases. For example, the (Di)
reaction involves four minerals and a fluid.
Invariant points involve 6 phases, and 4
phases are stable in each divariant field.  The
(Tr,Cc) reaction is degenerate.

Figure 6.  An invariant point in a 3-component system.

Figure 7.  An invariant point in a 4 component system.

Figure 8.  An invariant point in a 5-component system.
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•In these three drawings the reactions have been labeled in the traditional way with
the phases absent from the reaction in parentheses. 

Help From Compatibility Diagrams
One useful way to make sure that reactions are
arranged appropriately is to use compatibility
diagrams, as shown in Figure 9.

The triangular compatibility diagrams contain lines
dividing them into triangular fields.  Each triangle
represents a stable mineral assemblage.  Because
stable assemblages change when a reaction is
crossed, the tie lines change as well.

•Note 1: Crossing a reaction line can either (a) cause
a tie line flip (e.g. Ka + Qz = Py + H2O) or (b) a
terminal reaction, e.g. Py = Dsp + Qz). Tie-line flip
reactions result in one line (on the compatibility
diagram) disappearing and being replaced by a
different line. Crossing a terminal reaction (a
reaction that has a
single phase on one
side) results in a

phase disappearing completely -- and involves several
tie lines disappearing. (If the reaction is crossed in
the other direction, a new phase and several tie lines
appear).  

•Note 2: If a reaction is missing a particular phase
(traditionally labeled by putting the absent phase in
parentheses), that phase is present on the opposite
side of all other reactions. For example, the (Dsp)
reaction (reaction not involving diaspore) is at the
bottom of the diagram (Figure 9), and diaspore is
stable on the top side of all other reactions.

•Note 3: See Figure 10. The metastable extension of
any reaction (the dashed part of a reaction line past
the invariant point) occurs in a divariant field
bounded by two univariant curves that have the

Figure 9.  This example shows an invariant
point in the Al2O3-SiO2-H2O system involving
pyrophyllite, diaspore, kaolinite, quartz and
H2O. Triangular compatibility diagrams show
changes in mineral assemblages from one field
to the next.

Figure 10.  The (Qz), (Dsp) and (Py) reactions
are all stable on one side of the invariant point
only. This diagram, however, shows metastable
extensions of those reactions into divariant
fields. Consider the (Qz) reaction: it cannot be
stable up and to the left of the invariant point
because the reaction involves pyrophyllite, and
pyrophyllite is not stable to the left of the
(Ka)(H20) reaction. Note that the degenerate
(Ka)(H20) reaction passes through the invariant
point. Degenerate reaction often, but not always,
are stable on both sides of an invariant point.
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"absent" phase facing each other. In Figure 10, for example, the (Qz) reaction extends
into a field bounded by Dsp+Qz+H2O and Dsp+Qz.
 

•Note 4: The Morey - Schreinemakers Rule (also called the 180o rule) says that: (a) No
sector (the wedge between two reaction curves)
around an invariant point can go more than 180o. (b)
A divariant assemblage always occurs in a sector
which makes an angle about the invariant point of
<=180o). See Figure 11. In the diagrams shown, no
single phase or phase assemblage is stable for more
than 180o around the invariant point. For example,
the assemblage kaolinite + quartz is limited to
about 120o in the two sectors on the lower left by
the reactions (Dsp) and (Py). Another example:
pyrophyllite by itself enjoys a full 180o of stability
(three right lower sectors).

•Note 5: As you proceed around an invariant point:
2-phase assemblages break down before either
phase (in the assemblage) breaks down by itself.
Similarly, a 3-phase assemblage breaks down before
any 2-phase assemblage (that contains 2 of the original 3 phases), which breaks down
before any of the phases by themselves. In the example above, the (Qz) reaction
limits the assemblage Py-Dsp-H2O. Proceeding clockwise, the (Dsp) reaction limits
Py-H2O. Then, the (Ka)(H2O) reaction limits Py. Don't misinterpret this observation: it
does NOT mean that the sequence 3-phase, 2-phase, 1-phase is followed for all
assemblages. It just means that if 3-, 2-, and 1-phase reactions (that involve the same
phases) are present, they always follow in order. For complex systems, other
reactions may intervene, but the order must be followed.

•Note 6: Because the curvature and slopes of the univariant curves may be quite
variable across a phase diagram, invariant points may be duplicated. See Figure 12 on
the next page.  This occurs more often on T-X diagrams than on P-T diagrams because
curves on T-X diagrams often have great curvature or parabolic shapes.

Figure 11.  Two examples demonstrating the
Morey-Schreinemakers Rule. The assemblage
kaolinite + quartz is limited to two sectors by the
reactions (Py) and (Dsp). Pyrophyllite is stable
over a full 180o, only being limited by the terminal
reaction (Ka)(H2O).
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Practical Steps for Creating Schreinemakers 'Bundles'
•For an n-component system, a) if there are n + 2 phases an invariant point is
generated, and b) there are n + 2 univariant curves that radiate from this point,
unless one or more of the reactions is degenerate. The first step is to make a list of
all possible reactions. The best way to do this is to think about the phases NOT
involved, and systematically make a list of reactions and label them by the phases
absent.

Figure 12.   This T-X diagram shows a repeated invariant point involving the phases
quartz,calcite, K-feldspar, phlogopite, diopside, and tremolite. The dashed lines are
metastable parts of reaction curves. Note that the two invariant points are mirror images
(enantiomorphic projections) of each other. Image from John Valley.
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As an example, consider the CaO-MgO-SiO2 system, and the phases wollastonite
(Wo), quartz (Qz), diopside (Di), enstatite (En), and akermanite (Ak). 3
components means there are 4 phases in each potential reaction and 5 possible
reactions in all: [Wo], (Qz), (Di), (En), (Ak). One is degenerate, leaving:
         1. (Wo) 2Di = Ak+Qz+En
         2. (Di) Ak+Qz=2Wo+En
         3. (En) Ak+Qz=Di+Wo
         4. (Qz)(Ak) Di=Wo+En

•In principle, when creating a Schreinemakers bundle, it doesn't matter which two
curves you start with, or which sides you label as the reactants and products of the
reactions. However, some starting choices may make the analysis easier than others,
so trial and error may be involved. In general, it is best to begin with terminal
reactions if you have some. Draw the two reactions intersecting, and label them with
products/reactants, and missing phases. If portions of the reaction curves are clearly
metastable, make those portions dashed lines.

Once you "fix" the positions of the first two curves, all the other curves will fall into
the appropriate sequence. If you find difficulty, try starting with two different curves.

Two Solutions

Note: Schreinemakers method will produce bundles of reactions that are
topologically correct. Depending on how you orient (label reactants and products) the
first two reaction, you can get two different solutions. They will be mirror images of
each other. That is, if you go around the invariant point clockwise for one solution,
you will hit reactions in the same order as going around the other solution
counter-clockwise. The two possibilities are called enantiomorphic projections or
enantiomorphic pairs, and one way to think of them is that there is a "right-handed"
and a "left-handed" sequence of reactions.

There is no a priori way to determine which of the two is the correct solution.
Deciding which is correct requires some geologic intuition and a knowledge of the
types of reactions in orienting the Schreinemakers bundles on a phase diagram. For
a P-T diagram, for example, high density phases tend to be present on the high
pressure side of a reaction. Devolatilization reactions tend to have a steep, positive
slope, and the volatiles are liberated on the high T side of the diagram. Additional
insight can be gained from thermodynamic principles. The slopes of individual
reactions may be calculated using the Clausius-Clapeyron equation.
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      Step 1: In our example, Reaction 1 and Reaction
4 are terminal reactions. They are shown plotted in
Figure 13. Their orientation and labels have been
placed arbitrarily.  The metastable parts are shown
dashed.

•Now consider an additional reaction. By
considering the first two curves, you can determine
in which quadrant this new reaction may be stable.
Draw the reaction in that quadrant and continue it
through the invariant point and out the other side;
make the line dashed where metastable. Label each
curve with the phase absent, and also label curves
with reactants and products on the correct side of
each reaction. To place the products and reactants
on the correct side of the line, consider the 180o

rule, and other hints in notes 1 through 5 above (especially note 5). There is only one
correct way to place products and reactants. If you get them reversed, be prepared
for confusion and bad juju.

      Step 2: For our example, we will now plot
Reaction 2 (Figure 14). The reaction includes Ak, Qz
and En, and it also includes Wo. So, (if it is stable)
it can only be stable in the bottom right quadrant.
We plot it there and extend it (metastably) through
the invariant point. We label the right hand side
"Wo En" because the (Qz)(Ak) reaction also limits
Wo+En, and Wo+En cannot be stable more than
180o.  Note that the metastable part of this reaction
(Di) lies between two curves that eliminate Di, as it
should.

•Continue to position all additional curves around
the invariant point using the conventions above.
Label each curve with the phase absent, and also
label curves with reactants and products on the
correct side of each reaction. In rare instances, you
will have to guess how to label the reactions. You
continue to the end of the process and check for
consistency with the notes above. Generally if you
guess wrong, you will find that most of the reactions turn out to be metastable and

Figure 13.  We start with two reactions. Their
placement and orientation are arbitrary. We do
not worry about metastability at this time.

Figure 14. Now we add another reaction. We
know that the (Di) reaction must be in the lower
right quadrant because it involves Ak-Qz-Wo-En,
and those phases can only be stable together in
that quadrant because of the first two reactions.
"Wo En" must be on the top side of (Di) because
there is another reaction limiting Wo+En. The
two must "face" each other, and the angle
between them cannot exceed 180o.
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you do not have a reasonable invariant point.

      Step 3: We add the last reaction (Figure 15).
We note that it contains Di, and that means it must
be in the upper left quadrant if it is stable
(because two other reaction limit Di to that
quadrant). We plot it there and extend it through
the invariant point. We label the left hand side "Ak
Qz" because the (Di) reaction also limits Ak+Qz, and
that assemblage cannot be stable more than 180o.

•Continue adding reactions one-by-one until all are
on the diagram. THEN, go back and check for
consistency with all the rules above (to make sure
you have reactions in the correct places, and the
stable and metastable parts identified correctly). 
Finally, complete the diagram, if you wish, by
adding chemographic drawings showing mineral
assemblages in each of the divariant fields.

      Step 4: We now eliminate the metastable reaction
extensions as appropriate (Figure 16). 

      Step 5: Finally, we add the
triangular diagrams showing stable
mineral assemblages (Figure 17).

Figure 15.  The invariant point with all four
reactions plotted.  Some parts of the reactions
are metastable (see Step 4, Figure 15).

Figure 16.  This is the same as the
previous figure, except that we have
eliminated metastable reaction
extensions.

Figure 17.  Final diagram with triangular diagrams showing
assemblages stable in each field.
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Suppose we have more than C+2 Phases?
If we are considering a n-component system, and more than n+2 phases, they cannot
all exist at a single invariant point. So, there must be multiple invariant points
connected by a network of reactions.

An example is shown in Figure 18.  This figure
shows hypothetical phase relationships
involving 6 different phases in the SiO2

system. Only 3 phases may coexist at an
invariant point; there are 20 possible
invariant points, each involving three of the 6
phases. Only 5 invariant points are shown.
The others may exist out of view, or may not
exist at all.

Note: For demonstration purposes, Figure 18
has been distorted and extended into
negative pressure to include invariant points
that do not exist in nature.

Slopes and spacing between curves are
corrected in Figure 19, a "correct" phase
diagram showing phase relationships in the
SiO2 system. The invariant point at negative
pressure is gone, and a high-temperature
melt field is present (creating 3 new
invariant points).

Figure 18.  This diagram show several possible invariant
points in the SiO2 system and the reactions that emanate
from each of them. All Schreinemakers rules are obeyed
around each invariant point. The diagram is also consistent
with the phase rule. This is a 1-component system. So, three
phases coexist at each invariant point, two phases are
related by each reaction, and 1 phase is stable in each
divariant field.

In this and the following two diagrams, St=stishovite,
Co=coesite, aQz=β-quartz, bQz=?-quartz, Trd=tridymite,
Cr=cristobalite, and Liq = melt.

Figure 19.  Figure 17 is unrealistic because some of the
points at the bottom can only exist at negative pressure,
and because melting occurs before some of the
high-temperature points can be reached. This diagram
(Figure 18) shows the correct relationships, including the
melt (Liq) field. In this diagram, the fields are labeled
instead of the reactions. The reactions can be inferred. For
example the line separating St and Co must be the St=Co
reaction.
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We often label reactions by putting the
phase absent in normal parentheses. We
sometimes label invariant point by
putting the phase (or phases) absent in
square brackets. 

Figure 20 shows portions of the previous
diagram involving β-quartz, cristobalite,
tridymite and liquid. Three stable
invariant points are shown: [Liq], [ β-Qz],
and [Trd]. These are the points where NO
reactions include liquid,  β-quartz, or
tridymite. The [Cr] invariant point,
between the other 3, is metastable. It is
the point where  β-quartz, liquid and

tridymite would coexist but cannot. They cannot coexist because cristobalite will
form instead of any of the other 3. 

Figure 20.  Just as some reaction curves are metastable, some
invariant points can be metastable, too. This shows an
enlargement of the bottom center part of the previous diagram
(lines have been extended a bit into negative pressure to show the
[Qz] invariant point). The [Cr] invariant point is metastable because
it plots in the center of the Cr field. The three reactions that go to
the [Cr] invariant point are also metastable.


