Teaching Spatial Thinking in Mineralogy, Structural Geology, and Sedimentology & Stratigraphy: Tools and Strategies from Cognitive Science Research

Tuesday 2:15pm REC Center Large Ice Overlook Room
Oral Presentation Part of Geoscience Education Research II

Authors

Carol Ormand Ph.D., Carleton College
Tim Shipley, Temple University
Barb Dutrow, Louisiana State University
Laurel Goodwin, University of Wisconsin-Madison
Tom Hickson, University of St. Thomas (MN)
Basil Tikoff, University of Wisconsin-Madison
Kinnari Atit, University of California-Riverside
Kristin Gagnier, Temple University
Ilyse Resnick, University of Delaware
Spatial visualization is an essential skill in the STEM disciplines, including the geological sciences. Undergraduate students, including geoscience majors in upper-level courses, bring a wide range of spatial skill levels to the classroom. Students with weak spatial skills may struggle to understand fundamental concepts and to solve geological problems with a spatial component. However, spatial thinking skills are malleable. We developed a set of curricular materials designed to improve students' abilities to reason about spatially complex 3D geological concepts and problems in Mineralogy, Sedimentology & Stratigraphy, and Structural Geology.

Our curricular materials are based on several promising strategies that have emerged from cognitive science research on spatial thinking. These strategies include predictive sketching, making visual comparisons, gesturing, and the use of analogy. We conducted a three-year study of the efficacy of these materials in strengthening the spatial skills of students in these upper-level geoscience courses at three universities. Our methodology relies on a pre- and post-test study design, using several tests of spatial thinking skills administered at the beginning and end of each course, and on embedded assessments within each of the courses. In 2011-2012, we used a "teaching as usual" approach to gather baseline data, measuring improvement in students' spatial thinking skills with the existing curricula. In the two subsequent years we incorporated our new course-specific curricular materials, which can be found on the project website: http://serc.carleton.edu/spatialworkbook/activities.html.

Students in all courses, over all three years, show improvement in spatial thinking skills. Embedded assessments show that students exposed to our new curricular materials are better able to solve some spatially challenging geological problems than students from the baseline year. Teaching spatial thinking in the context of discipline-based exercises has the potential to transform undergraduate education in the geological sciences by removing one significant barrier to success.