Parallel Computing in the Computer Science Curriculum > Modules

Modules

Want to know more about modules?

Find out more about modules and their contents.

Have a module of your own?

Contribute to the site by submitting your own module. Your submission will be reviewed by CS In Parallel to determine what categories it should be listed under. After that process, it will become available to all viewers of this site.

The Module Collection



Help

Show all pages

Current Search Limits

Recommended Teaching Level

showing only Advanced Show all Recommended Teaching Level

Results 1 - 6 of 6 matches

Parallel Computing Concepts
Richard Brown
This concept module will introduce a core of parallel computing notions that CS majors and minors should know in preparation for the era of manycore computing, including parallelism categories, concurrency issues and solutions, and programming strategies.

GPU Programming
Elizabeth Shoop; Yu Zhao
In this module, we will learn how to create programs that intensionally use GPU to execute. To be more specific, we will learn how to solve parallel problems more efficiently by writing programs in CUDA C Programming Language and then executes them on GPUs based on CUDA architecture.

Distributed Computing Fundamentals
Elizabeth Shoop
Message Passing Interface (MPI) is a programming model widely used for parallel programming in a cluster. Using MPI, programmers can design methods to divide large data and perform the same computing task on segments of it and then and distribute those tasks to multiple processing units within the cluster. In this module, we will learn important and common MPI functions as well as techniques used in 'distributed memory' programming on clusters of networked computers.

Heterogeneous Computing
Elizabeth Shoop;
Message Passing Interface (MPI) is a programming model widely used for parallel programming in a cluster. NVIDIA®'s CUDA, a parallel computing platform and programming model, uses GPU for parallel computation problems. This module will explore ways to combine these two parallel computing platforms to make parallel computation more efficient.

Patternlets in Parallel Programming
Material originally created by Joel Adams, Calvin CollegeCompiled by Libby Shoop, Macalester College
Short, simple C programming examples of basic shared memory programming patterns using OpneMP and basic message-passing patterns using MPI.

Drug Design Exemplar
Richard Brown
An important problem in the biological sciences is that of drug design: finding small molecules, called ligands, that are good candidates for use as drugs. We introduce the problem and provide several different parallel solutions, in the context of parallel program design patterns.



      Next Page »