Parallel Computing in the Computer Science Curriculum > Modules

Modules

Want to know more about modules?

Find out more about modules and their contents.

Have a module of your own?

Contribute to the site by submitting your own module. Your submission will be reviewed by CS In Parallel to determine what categories it should be listed under. After that process, it will become available to all viewers of this site.

The Module Collection



Help

Show all pages

Current Search Limits

Recommended Teaching Level

showing only Introductory Show all Recommended Teaching Level

Results 1 - 4 of 4 matches

Concurrent Access to Data Structures
Professor Libby Shoop, Macalester College
This module enables students to experiment with creating a task-parallel solution to the problem of crawling the web by using Java threads and thread-safe data structures available in the java.util.concurrent package.

Multicore Programming with OpenMP
Richard Brown; Elizabeth Shoop
In this lab, we will create a program that intentionally uses multi-core parallelism, upload and run it on the MTL, and explore the issues in parallelism and concurrency that arise. This module uses OpenMP.

Multi-core programming with Intel's Manycore Testing Lab (using Threading Building Blocks)
Professor Richard Brown, St. Olaf College
Intel Corporation has set up a special remote system that allows faculty and students to work with computers with lots of cores, called the Manycore Testing Lab (MTL). In this lab, we will create a program that intentionally uses multi-core parallelism, upload and run it on the MTL, and explore the issues in parallelism and concurrency that arise.

Map-reduce Computing for Introductory Students using WebMapReduce
Professor Richard Brown, St. Olaf College Professor Libby Shoop, Macalester College
This module emphasizes data-parallel problems and solutions, the so-called 'embarrassingly parallel' problems where processing of input data can easily be split among several parallel processes. Students use a web application called WebMapReduce (WMR) to write map and reduce functions that operate on portions of a massive dataset in parallel.



      Next Page »