Teach the Earth > Oceanography > Teaching Activities > Seawater composition: an introduction

Seawater composition: an introduction

Joceline Boucher, Corning School of Oceanography, Maine Maritime Academy, joceline.boucher@mma.edu

Author Profile

This activity was selected for the On the Cutting Edge Reviewed Teaching Collection

This activity has received positive reviews in a peer review process involving five review categories. The five categories included in the process are

  • Scientific Accuracy
  • Alignment of Learning Goals, Activities, and Assessments
  • Pedagogic Effectiveness
  • Robustness (usability and dependability of all components)
  • Completeness of the ActivitySheet web page

For more information about the peer review process itself, please see http://serc.carleton.edu/NAGTWorkshops/review.html.

This page first made public: May 22, 2013


In this activity, students collaboratively "build" the hydrologic cycle and use it as a starting point for thinking about the composition of seawater.



This activity is designed for students in an introductory oceanography course.

Skills and concepts that students must have mastered

Students are expected to recall information about the hydrologic cycle that they learned in K12.

How the activity is situated in the course

Just prior to a unit on seawater chemistry.


Content/concepts goals for this activity

Through the activity, students will review the hydrologic cycle and learn where the cycle transports solutes.

Higher order thinking skills goals for this activity

  • Applying existing knowledge (building the hydrologic cycle from memory)
  • Extending the conceptual framework (hydrologic cycle) to new processes (transport of solutes)

Other skills goals for this activity

Description and Teaching Materials

The activity is a two part worksheet. The first part asks students to list Earth's major reservoirs of water, rank the reservoirs by size, suggest transport processes between reservoirs, and think about transfer rates between reservoirs. This part takes about 10 minutes and is done individually. The instructor then calls on students to supply one answer at a time; this is most effective if the answers are recorded pictorially at the board by the instructor or by students. Then students similarly rank reservoir size and transfer rates, with the instructor supplying corrections and background information as needed. An important part of the activity is ensuring that students revise their worksheets based on the classwork.

In the second part, students determine which portions of the hydrologic cycle are likely to transport solutes, and begin to think about the types and relative amounts of substances that comprise seawater. Lastly students predict if the same substances will be found in fresh water, and if they are more concentrated there. This part of the activity also takes about 10 minutes.

Together, the activity and subsequent discussions require an entire 50 minute class period.

The activity helps introduce a unit on seawater chemistry.

Teaching Notes and Tips

I find that conceptually connecting the transfer rates of water molecules in the hydrologic cycle, which students learn in the materials above, to the residence time of solutes in seawater is a helpful extension of this activity. For example, students know that the cycling of water in the atmosphere is rapid based on their experience and the classwork. This atmospheric cycle can be formalized as a "residence time": (Size of reservoir)/(rate of input or output) = residence time. For the atmosphere, this is (13,000 km3)/(434,000 km3/year) = 0.030 years = 11 days; in this case the rate of input is the global rate of evaporation, which also equals the global rate of precipitation. This is basically the same calculation one uses to estimate residence times of solutes in seawater: (total mass of solute in ocean)/(rate of input or output of solute).


I do not grade the worksheet but students are responsible its content on their next exam.

References and Resources

New TTE Logo Small

Atmospheric Science resources from across Teach the Earth »

Atmospheric Science resources from Teach the Earth include:

Specialized collections including or search

Climate Change resources from across Teach the Earth »

Climate Change resources from Teach the Earth include:

Specialized collections including or search

Oceanography resources from across Teach the Earth »

Oceanography resources from Teach the Earth include:

Specialized collections including

or search

Intro Geoscience resources from across Teach the Earth »

Introductory Geoscience resources from Teach the Earth include:

Specialized collections including

or search